K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2020

C3 

Đặt \(S=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)

\(M=\frac{b}{b+c}+\frac{c}{c+a}+\frac{a}{a+b}\)

\(N=\frac{c}{b+c}+\frac{a}{c+a}+\frac{b}{a+b}\)

Ta có : \(M+N=\left(\frac{b}{b+c}+\frac{c}{c+a}+\frac{a}{a+b}\right)+\left(\frac{c}{b+c}+\frac{a}{c+a}+\frac{b}{a+b}\right)\)

\(=\left(\frac{b}{b+c}+\frac{c}{b+c}\right)+\left(\frac{c}{c+a}+\frac{a}{c+a}\right)+\left(\frac{a}{a+b}+\frac{b}{a+b}\right)\)

\(=\frac{b+c}{b+c}+\frac{c+a}{c+a}+\frac{a+b}{a+b}=1+1+1=3\)

Ta có :\(+)M+S=\frac{b}{b+c}+\frac{c}{c+a}+\frac{a}{a+b}+\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

\(=\frac{b+a}{b+c}+\frac{c+b}{c+a}+\frac{a+c}{b+a}\)

Hoàn toàn tương tự :\(+)N+S=\frac{a+c}{b+c}+\frac{b+a}{c+a}+\frac{b+c}{b+a}\)

Áp dụng Bất đẳng thức Cauchy cho 2 số không âm ta được :

\(\frac{b+a}{b+c}+\frac{c+b}{c+a}+\frac{a+c}{b+a}\ge3\sqrt[3]{\frac{\left(b+a\right)\left(c+b\right)\left(a+c\right)}{\left(b+c\right)\left(c+a\right)\left(b+a\right)}}=3\)

\(\frac{a+c}{b+c}+\frac{b+a}{c+a}+\frac{b+c}{b+a}\ge3\sqrt[3]{\frac{\left(a+c\right)\left(b+a\right)\left(b+c\right)}{\left(b+c\right)\left(c+a\right)\left(b+a\right)}}=3\)

Cộng theo vế các bất đẳng thức cùng chiều ta được :

\(M+N+2S\ge3+3=6\)

\(< =>3+2S\ge6< =>2S\ge6-3=3< =>S\ge\frac{2}{3}\)

Vậy ta có điều phải chứng minh

9 tháng 7 2020

\(P=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{b+a}=\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}+\frac{a+b+c}{a+b}-3\)

\(=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)-3\)

\(\ge\left(a+b+c\right)\frac{9}{b+c+a+c+a+b}-3\)

\(=\frac{9}{2}-3=\frac{3}{2}\)

Dấu "=" xảy ra <=> a = b = c

10 tháng 2 2021

Áp dụng BĐT Bunyakovsky dạng phân thức ta có:
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{a^2}{ab+ac}+\frac{b^2}{bc+ba}+\frac{c^2}{ca+cb}\)

\(\ge\frac{\left(a+b+c\right)^2}{ab+bc+bc+ca+ca+ab}=\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)

Mà \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\)

\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{\left(a+b+c\right)^2}{\frac{2\left(a+b+c\right)^2}{3}}=\frac{3}{2}\)

Dấu "=" xảy ra khi: a = b = c

15 tháng 10 2017

bài 2

(bài này là đề thi olympic Toán,Ireland 1997),nhưng cũng dễ thôi

Giả sử ngược lại \(a^2+b^2+c^2< abc\)

khi đó \(abc>a^2+b^2+c^2>a^2\)nên \(a< bc\)

Tương tự \(b< ac,c< ab\)

Từ đó suy ra :\(a+b+c< ab+bc+ac\left(1\right)\)

mặt khác ta lại có:\(a^2+b^2+c^2\ge ab+bc+ac\)nên

\(abc>a^2+b^2+c^2\ge ab+bc+ac\)

\(\Rightarrow abc>ab+ac+bc\left(2\right)\)

Từ (1),(2) ta có\(abc>a+b+c\)(trái với giả thuyết)

Vậy bài toán được chứng minh

15 tháng 10 2017

3)để đơn giản ta đặt \(x=\frac{1}{a},y=\frac{1}{b},z=\frac{1}{c}\).Khi đó \(x,y,z>0\)

và \(xy+yz+xz\ge1\)

ta phải chứng minh  có ít nhất hai trong ba bất đẳng thức sau đúng

\(2x+3y+6z\ge6,2y+3z+6x\ge6,2z+3x+6y\ge6\)

Giả sử khẳng định này sai,tức là có ít nhất hai trong ba bất đẳng thức trên sai.Không mất tính tổng quát,ta giả sử

\(2x+3y+6z< 6\)và \(2y+3z+6x< 6\)

Cộng hai bất đẳng thức này lại,ta được:\(8x+5y+9z< 12\)

Từ giả thiết \(xy+yz+xz\ge1\Rightarrow x\left(y+z\right)\ge1-yz\)

\(\Rightarrow x\ge\frac{1-yz}{y+z}\)Do đó

\(8\frac{1-yz}{y+z}+5y+9z< 12\Leftrightarrow8\left(1-yz\right)+\left(5y+9z\right)\left(y+z\right)< 12\left(y+z\right)\)

\(\Leftrightarrow5y^2+6yz+9z^2-12y-12z+8< 0\)

\(\Leftrightarrow\left(y+3z-2\right)^2+4\left(y-1\right)^2< 0\)(vô lý)

mâu thuẫn này chứng tỏ khẳng định bài toán đúng.Phép chứng minh hoàn tất.

8 tháng 9 2019

k nguyên dương => \(k\ge1\)\(\Leftrightarrow\)\(a^k\ge a\)\(\Leftrightarrow\)\(\frac{a^k}{b+c}\ge\frac{a}{b+c}\)

Tương tự với 2 phân thức còn lại, cộng 3 bđt ta thu đc bđt Nesbit 3 ẩn => đpcm 

8 tháng 9 2019

Ủa bất đẳng thức \(a^k\ge a\)chỉ đúng với a>1 thôi

15 tháng 10 2017

Đặt \(b+c=x;a+c=y;a+b=z\)

Áp dụng bđt Bunhiacopxki ta có :

\(\left(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\right)\left(\sqrt{x}^2+\sqrt{y}^2+\sqrt{z}^2\right)\ge\left(\frac{a}{\sqrt{x}}.\sqrt{x}+\frac{b}{\sqrt{y}}.\sqrt{y}+\frac{c}{\sqrt{z}}.\sqrt{z}\right)^2\)

\(\Leftrightarrow\left(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\right)\left(x+y+z\right)\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)

\(\Leftrightarrow\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{\left(b+c\right)+\left(a+c\right)+\left(a+b\right)}\)

\(\Leftrightarrow\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\) (đpcm)

Dấu "=" xay ra \(\Leftrightarrow a=b=c\)

15 tháng 10 2017

Áp dụng S-vác-sơ, ta có

\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{b+c+a+c+a+b}\)

                                                     \(=\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)

24 tháng 10 2015

bạn dùng cauchy hai lần nhé

\(\frac{b}{a^2}+\frac{c}{b^2}+\frac{a}{c^2}\ge3.\sqrt[3]{\frac{abc}{\left(abc\right)^2}}=3.\frac{1}{\sqrt[3]{abc}}\)

\(vì\sqrt[3]{abc}\le\frac{a+b+c}{3}nên\frac{3}{\sqrt[3]{abc}}\ge\frac{3}{\frac{a+b+c}{3}}=\frac{9}{a+b+c}\)

NV
9 tháng 6 2020

\(\frac{a^3}{b^3}+1+1\ge\frac{3a}{b}\) ; \(\frac{b^3}{c^3}+1+1\ge\frac{3b}{c}\) ; \(\frac{c^3}{a^3}+1+1\ge\frac{3c}{a}\)

Cộng vế với vế:

\(\frac{a^3}{b^3}+\frac{b^3}{c^3}+\frac{c^3}{a^3}+6\ge\frac{3a}{b}+\frac{3b}{c}+\frac{3c}{a}\)

\(\Leftrightarrow\frac{a^3}{b^3}+\frac{b^3}{c^3}+\frac{c^3}{a^3}\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-6\)

\(\Rightarrow\frac{a^3}{b^3}+\frac{b^3}{c^3}+\frac{c^3}{a^3}\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+2.3\sqrt[3]{\frac{abc}{bca}}-6=\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)