K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2020

Trl:

Các số nào???!?

#ghost

19 tháng 11 2016

Gọi d là ƯCLN(2n+5;3n+7)

Theo đề bài ra ta có: 2n+5 chia hết cho d => 3(2n+5)= 6n+15 chia hết cho d

                                  3n+7 chia hết cho d => 2(3n+7)=6n+14 chia hết cho d

Vì 6n+15 chia hết cho d

    6n+14 chia hết cho d

=> (6n+15)-(6n+14)=1 chia hết cho d

=> d thuộc Ư(1)={1;-1}

Vì d thuộc Ư của 1 => 2n+5 và 3n+7 nguyên tố cùng nhau       ĐPCM

19 tháng 11 2016

2n + 5 và 3n + 7

gọi d là UWCLN(2n + 5 ; 3n + 7 )

=> 2n + 5 : d => 3(2n+5) = 6n+ 15 :d

và 3n + 7 : d => 2(3n+7) = 6n + 14 : d

=> 6n + 15 - 6n + 14= 1

vậy 2n + 5 và 3n + 7 là số nguyên tố cùng nhau

k mik nhé

15 tháng 12 2021

 Đặt UCLN ( n+2; n+3 ) = d

=> n + 2 chia hết cho d ; n + 3 chia hết cho d

=> n + 3 - n - 2 chia hết cho d

=> 1 chia hết cho d

=> d = 1

a: \(A=\left(a+1\right)\left(a+3\right)\left(a+5\right)\left(a+7\right)+16\)

\(=\left(a^2+8a+7\right)\left(a^2+8a+15\right)+16\)

\(=\left(a^2+8a\right)^2+22\left(a^2+8a\right)+105+16\)

\(=\left(a^2+8a\right)^2+22\left(a^2+8a\right)+121\)

\(=\left(a^2+8a+11\right)^2\)

b: \(\left(a-b\right)\left(a-2b\right)\left(a-3b\right)\left(a-4b\right)+b^4\)

\(=\left(a^2-5ab+4b^2\right)\left(a^2-5ab+6b^2\right)+b^4\)

\(=\left(a^2-5ab\right)^2+10b^2\left(a^2-5ab\right)+24b^4+b^4\)

\(=\left(a^2-5ab\right)^2+2\cdot\left(a^2-5ab\right)\cdot5b^2+\left(5b^2\right)^2\)

\(=\left(a^2-5ab+5b^2\right)^2\)

29 tháng 10 2016

a) Gọi 2 số lẻ liên tiếp là 2a + 1 và 2a + 3,ước chung là d( \(d\ne2\)).Ta có :

2a + 1 ; 2a + 3 đều chia hết cho d => (2a + 3) - (2a + 1) = 2 .: d => d = 1 => 2a + 1 ; 2a + 3 nguyên tố cùng nhau

b) Gọi ước chung của 2n + 5 và 3n + 7 là d.Ta có :

2n + 5 .: d => 3(2n + 5) = 6n + 15 .: d

3n + 7 .: d => 2(3n + 7) = 6n + 14 .: d

=> (6n + 15) - (6n + 14) = 1 .: d => d = 1 => 2n + 5 ; 3n + 7 nguyên tố cùng nhau

8 tháng 11 2016

gọi 2 số lẻ liên tiếp là 2a+1 và 2a+3 ƯC là d ta có :

2a+1 ;2a+3 đều chia hết cho d => (2a+3)-(2a+1)=2 .: d =>2a+1;2a+3 nguyên tố cùng nhau

b)gọi ƯC của 2n+5 và 3n+7 là d ta có

2n+5.d => 3(2n+5)=6n+15.:

3n+7.:d => 2(3n+7)=6n+14.:d

=> (6n+15)-(6n+14)=1.:d =>d=1 =>2n+5 ; 3n+7 nguyên tố cùng nhau

29 tháng 11 2015

gọi 2.n +1 là một số lẻ bất kì (n thuộc N )

suy ra 2n +1 và 2n+3 là 2 số lẻ liên tiếp  

gọi d thuoocj vào ƯC(2n+1,2n+3 )  (d thuộc N*)

suy ra 2n+1 và 2n+3 chia hết cho d 

suy ra [(2n+3) - (2n+1)] chia hết cho d 

suy ra 2 chia hết cho d

suy ra d thuộc Ư(2) ={1;2}

 suy ra d khác 2 (vì  2n+1 và 2n+3 là các số lẻ )

suy ra d =1 

suy ra ƯC (2n+1 ,2n+3 ) =1

suy ra UWCLN (3n+1 , 2n+3) =1

suy ra 2n +1 và 2n+3 nguyên tố cùng nhau 

vậy 2 số lẻ liên tiếp luôn nguyên tố cùng nhau . 

a: Gọi a=UCLN(2k+1;2k+3)

\(\Leftrightarrow2k+3-2k-1⋮a\)

\(\Leftrightarrow2⋮a\)

mà 2k+1 là số lẻ

nên a=1

=>2k+1 và 2k+3 là hai số nguyên tố cùng nhau

b: Gọi a=UCLN(n+1;n+2)

\(\Leftrightarrow n+2-n-1⋮a\)

\(\Leftrightarrow1⋮a\)

=>a=1

=>n+1 và n+2 là hai số nguyên tố cùng nhau

Câu 1: 

a: p=3 thì 3+2=5 và 3+10=13(nhận)

p=3k+1 thì p+2=3k+3(loại)

p=3k+2 thì p+10=3k+12(loại)

b: p=3 thì p+10=13 và p+20=23(nhận)

p=3k+1 thì p+20=3k+21(loại)

p=3k+2 thì p+10=3k+12(loại)

2.

p là số nguyên tố > 3 => p lẻ p + d là số nguyên tố => p + d lẻ mà p lẻ => d chẵn => d chia hết cho 2 +) Xét p = 3k + 1 Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + 2d = 3k + 1 + 2. (3m +1) = 3k + 6m + 3 chia hết cho 3 => không là số nguyên tố Nếu d chia cho3 dư 2 => d = 3m + 2 => p +d = 3k + 1 + 3m + 2 = 3k + 3m + 3 => p + d không là số nguyên tố => d chia hết cho 3 +) Xét p = 3k + 2 Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + d = 3k + 2 + 3m + 1 = 3k + 3m + 3 => p + d không là số ngt Nếu d chia cho 3 dư 2 => d = 3m + 2 => p + 2d = 3k + 6m + 6 => p + 2d không là số ngt => d chia hết cho 3 Vậy d chia hết cho cả 2 và 3 => d chia hết cho 6