Chứng minh :
a) 11 + 6\(\sqrt{2}\) = ( 3 + \(\sqrt{6}\))2
b) \(\sqrt{\sqrt{11}+6\sqrt{2}}\) + \(\sqrt{\sqrt{11}-6\sqrt{2}}\) = 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, phân tích vế trái ta được:
11+6\(\sqrt{2}\)=9+2.3.\(\sqrt{2}\)+2=(3+\(\sqrt{2}\))2\(\)=VP(dpcm)
b,phân tích vế trái ta được
\(\sqrt{11+6\sqrt{ }2}\)+\(\sqrt{11-6\sqrt{ }2}\)=|3+\(\sqrt{2}\)|+|3-\(\sqrt{2}\)|=6=VP(dpcm)
a,phân tích vế trái ta được
8-2\(\sqrt{7}\)=7-2\(\sqrt{7}\)+1=(\(\sqrt{7}\)-1)2
câu b sai đề nha
a) \(\sqrt{\dfrac{1}{8}}\cdot\sqrt{2}\cdot\sqrt{125}\cdot\sqrt{\dfrac{1}{5}}\) = \(\sqrt{\dfrac{1}{8}\cdot2}.\sqrt{125\cdot\dfrac{1}{5}}=\sqrt{\dfrac{1}{4}}.\sqrt{25}=\dfrac{1}{2}\cdot5=2,5\)
b)\(\sqrt{\sqrt{2}-1}.\sqrt{\sqrt{2}+1}=\sqrt{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}=\sqrt{2-1}=1\)
a) Ta có: \(VP=\left(3+\sqrt{6}\right)^2\)
\(=3^2+2\cdot3\cdot\sqrt{6}+\left(\sqrt{6}\right)^2\)
\(=9+6\sqrt{6}+6\)
\(=15+6\sqrt{6}\)≠VP
=> Sai đề rồi bạn