Cho tam giác ABC vuông tại a.Trên cạnh AC lấy D,E sao cho các góc ABD=DBE=EBC.Trên tia đối của tia DB lấy điểm F sao cho DF=BC.Chứng minh rằng tam giác CDF cân.
Giải dùm mk,mk đang cần gấp.PLEASE!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: Xét ΔABE và ΔDBE có
BA=BD
\(\widehat{ABE}=\widehat{DBE}\)
BE chung
Do đó: ΔABE=ΔDBE
Xét ΔABDΔABD và ΔEBDΔEBD, ta có:
AB=BE ( gt)
ABDˆ=EBDˆABD^=EBD^ ( Vì BD là tia phân giác của góc B)
BD chung
⇒ΔABD=ΔEBD⇒ΔABD=ΔEBD (c-g-c)
a: Xét ΔABD và ΔAED có
AB=AE
góc BAD=góc EAD
AD chung
Do đó: ΔABD=ΔAED
=>DB=DE
b: Xét ΔDBF và ΔDEC có
góc DBF=góc DEC
DB=DE
góc BDF=góc EDC
Do đo: ΔDBF=ΔDEC
c:ΔDBF=ΔDEC
nên góc BDF=góc EDC
=>góc BDF+góc BDE=180 độ
=>E,D,F thẳng hàng
Bài 1 : Kẻ ON//BC và DM//BC ( N và M thuộc AC )
=> ON//DM
Xét tam giác MED có : OD=OE và ON//DM => EN=NM (1)
Mặt khác ta có DMBC là hình thang cân nên DB=CM
Mà DB=AE => AE=CM (2)
Cộng vế theo vế 1 và 2 ta có : AE+EN=CM+MN => AN=NC
Xét tam giác AHC có : ON//HC ( vì ON//BC ) và AN=NC => AN=NC ( t/c của đg trung bình ) => đpcm