1.tìm x
a.\(\frac{-5}{8}+x=\frac{4}{9}\)
b.\(1^3_4.x+1^1_2=-\frac{4}{5}\)
c.\(\frac{1}{4}+\frac{3}{4}x=\frac{3}{4}\)
d.\(x.\left(\frac{1}{4}+\frac{1}{5}\right)-\left(\frac{1}{7}+\frac{1}{8}\right)=0\)
e.\(\frac{3}{35}-\left(\frac{3}{5}+x\right)=\frac{2}{7}\)
f.\(\frac{3}{7}+\frac{1}{7}:x=\frac{3}{14}\)
g.\(\left(5x-1\right)\left(2x-\frac{1}{3}\right)=0\)
Bài 1:
a) Ta có: \(\frac{-5}{8}+x=\frac{4}{9}\)
\(\Leftrightarrow x=\frac{4}{9}-\frac{-5}{8}=\frac{32}{72}-\frac{-45}{72}\)
hay \(x=\frac{77}{72}\)
Vậy: \(x=\frac{77}{72}\)
b) Ta có: \(1\frac{3}{4}\cdot x+1\frac{1}{2}=-\frac{4}{5}\)
\(\Leftrightarrow\frac{7}{4}\cdot x+\frac{3}{2}=-\frac{4}{5}\)
\(\Leftrightarrow\frac{7}{4}\cdot x=-\frac{4}{5}-\frac{3}{2}=-\frac{23}{10}\)
\(\Leftrightarrow x=\frac{-23}{10}:\frac{7}{4}=\frac{-23}{10}\cdot\frac{4}{7}\)
hay \(x=-\frac{46}{35}\)
Vậy: \(x=-\frac{46}{35}\)
c) Ta có: \(\frac{1}{4}+\frac{3}{4}x=\frac{3}{4}\)
\(\Leftrightarrow\frac{3}{4}x=\frac{2}{4}\)
\(\Leftrightarrow x=\frac{2}{4}:\frac{3}{4}=\frac{2}{4}\cdot\frac{4}{3}\)
hay \(x=\frac{2}{3}\)
Vậy: \(x=\frac{2}{3}\)
d) Ta có: \(x\cdot\left(\frac{1}{4}+\frac{1}{5}\right)-\left(\frac{1}{7}+\frac{1}{8}\right)=0\)
\(\Leftrightarrow x\cdot\frac{9}{20}-\frac{15}{56}=0\)
\(\Leftrightarrow x\cdot\frac{9}{20}=\frac{15}{56}\)
\(\Leftrightarrow x=\frac{15}{56}:\frac{9}{20}=\frac{15}{56}\cdot\frac{20}{9}\)
hay \(x=\frac{25}{42}\)
Vậy: \(x=\frac{25}{42}\)
e) Ta có: \(\frac{3}{35}-\left(\frac{3}{5}+x\right)=\frac{2}{7}\)
\(\Leftrightarrow\frac{3}{35}-\frac{3}{5}-x=\frac{2}{7}\)
\(\Leftrightarrow\frac{-18}{35}-x=\frac{2}{7}\)
\(\Leftrightarrow-x=\frac{2}{7}-\frac{-18}{35}=\frac{2}{7}+\frac{18}{35}=\frac{4}{5}\)
hay \(x=-\frac{4}{5}\)
Vậy: \(x=-\frac{4}{5}\)
f) Ta có: \(\frac{3}{7}+\frac{1}{7}:x=\frac{3}{14}\)
\(\Leftrightarrow\frac{1}{7}\cdot\frac{1}{x}=\frac{3}{14}-\frac{3}{7}=\frac{-3}{14}\)
\(\Leftrightarrow\frac{1}{x}=\frac{-3}{14}:\frac{1}{7}=-\frac{3}{14}\cdot7=-\frac{3}{2}\)
\(\Leftrightarrow x=\frac{1\cdot2}{-3}=\frac{2}{-3}=-\frac{2}{3}\)
Vậy: \(x=-\frac{2}{3}\)
g) Ta có: \(\left(5x-1\right)\left(2x-\frac{1}{3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-1=0\\2x-\frac{1}{3}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=1\\2x=\frac{1}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{5}\\x=\frac{1}{3}:2=\frac{1}{6}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{1}{5};\frac{1}{6}\right\}\)