Cho các số tự nhiên a và b thỏa mãn 2016b+a chia hết cho 2017 .CMR A = (2015b+2a)(2014b+3a)...(2015a+2b) chia hết cho 2017^2014
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
\(5a+2b⋮7\Rightarrow2\left(5a+2b\right)=10a+4b⋮7\)
\(7a⋮7\)
\(\Rightarrow10a+4b-7a=3a+4b⋮7\)
a, ta có (3a+2b )+( 2a+3b)=5(a+b) chia hêt cho 5
mà 3a+2b chia hết cho 5 nên 2a+3b chia hết cho 5 (đpcm)
b,Gọi (a,b)=d nên [a,b]=6d nên a=dm,b=dn
(a,b).[a,b]=a.b=d.d.6
a-b=d(m-n)=5 nên 5 chia hết cho d nên d =1 (nếu d = 5 thì loại) nên a.b = 6 nên a=6,b=1
a) Ta có \(a\le b\)
\(\Rightarrow2015a\le2015b\)
\(\Rightarrow2015a-2016\le2015b-2016\)
b) Ta có \(a\le b\)
\(\Rightarrow-a\ge-b\)
\(\Rightarrow-2015a\ge-2015b\)
Xin lỗi mình bấm nhầm
\(\Rightarrow-2015a\ge-2015b\)
\(\Rightarrow-2015a-2017\ge-2015b-2017\)
Mà \(-2015a-2016>-2015a-2017\)
Nên \(-2015a-2016>-2015b-2017\)