K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2020

thiếu đề bài ko thế bn

21 tháng 1 2018

a) vì M là trung điểm của BC nên AM là đường trung tuyến của tam giác ABC(1)

Mặt khác ta lại có AM là phân giác của góc A (gt)(2)

Từ (1) và (2) =>tam giác ABC là tam giác cân tại A (đpcm)

b) vì tam giác ABC cân tại A (cm câu a)=> AM là trung tuyến đồng thời là đường cao của ABC

Áp dụng đly Py-ta-go trong tam giác MAB ta có:

AM^2 + MB^2 = AB^2

<=> 35^2 + MB^2 = 37^2

<=>MB^2 = 37^2 - 35^2 = 144

=> MB = 12

Vì M thuộc BC => MB +MC =BC

hay 2MB = BC =>BC = 12x2 = 24

21 tháng 1 2018

a,tam giác AMB và tam giác AMCcó:

góc BMA= góc CMA (gt)

BM=CM(gt)

gócBAM=góc CAM(gt)

suy ra,tam giác AMB=AMC(g.c.g) suy raAB=AC(2 cạnh t\ứng) hay tam giac ABC cân tại A

B,BC=24(cm theo định lí py-ta-go)

a: Xét ΔAMB và ΔAMC co

AM chung

MB=MC

AB=AC

=>ΔAMB=ΔAMC

b: ΔABC cân tại A

mà AM là trung tuyến

nên AM vuông góc CB

a: Xét ΔNAB có

NM vừa là đường cao, vừa là trung tuyến

nên ΔBAN cân tại N

b: Xét ΔBAC có

M là trung điểm của BA

MN//AC

Do đó: N là trung điểm của BC

31 tháng 12 2021

a: Xét tứ giác ABNC có 

M là trung điểm của AN

M là trung điểm của BC

Do đó:ABNC là hình bình hành

Suy ra: AB=NC

a) Xét ΔACN và ΔDBN có 

NA=ND(gt)

\(\widehat{ANC}=\widehat{DNB}\)(hai góc đối đỉnh)

NC=NB(N là trung điểm của BC)

Do đó: ΔACN=ΔDBN(c-g-c)

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=BC^2-AB^2=5^2-3^2=16\)

hay AC=4(cm)

Ta có: ΔACN=ΔDBN(cmt)

nên AC=DB(hai cạnh tương ứng)

mà AC=4cm(cmt)

nên BD=4cm

Vậy: BD=4cm

23 tháng 7 2019

A B C N M D E

a, xét tam giác AMD và tam giác BMC có :

BM = MA do M là trung điểm của AB (gt)

DM = MC do M là trung điểm của DC (gt)

góc AMD = góc BMC (đối đỉnh)

=> tam giác AMD = tam giác BMC (c-g-c)

b, tam giác AMD = tam giác BMC (câu a)

=> AD = BC (đn)      (1)

     góc ADM = góc MCB (đn) mà 2 góc này so le trong

=> AD // BC (tc)

c, xét tam giác  ANE và tam giác CNB có : 

AN = CN do N là trung điểm của AC (gt)

NE = NB do N là trung điểm của BE (gt)

góc ANE = góc CNB (đối đỉnh)

=> tam giác ANE = tam giác CNB (c-g-c)

=> BC = AE (đn)    (2)

(1)(2) => AE = AD (tcbc)

Mà A nằm giữa E và D 

=> A là trung điểm của DE (đn)

a) Xét tam giác AND và tam giác CNB ta có:

NB = ND (Vì N là trung điểm của BD)

góc AND = góc CNB (đối đỉnh)

NA = NC (Vì N là trung điểm của AC)

=> tam giác AND = tam giác CNB (c-g-c)

b) Vì tam giác AND = tam giác CNB

=> AD = BC (2 cạnh tương ứng)

=> góc DAN = góc BCN (2 góc tương ứng)

mà góc DAN và góc BCN là 2 góc so le trong

suy ra AD // BC

c) chưa nghĩ ra

a) Xét ΔAND và ΔCNB có 

NA=NC(N là trung điểm của AC)

\(\widehat{AND}=\widehat{CNB}\)(hai góc đối đỉnh)

ND=NB(N là trung điểm của BD)

Do đó: ΔAND=ΔCNB(c-g-c)

b) Ta có: ΔAND=ΔCNB(cmt)

nên AD=BC(hai cạnh tương ứng)

Ta có: ΔAND=ΔCNB(cmt)

nên \(\widehat{ADN}=\widehat{CBN}\)(hai góc tương ứng)

mà \(\widehat{ADN}\) và \(\widehat{CBN}\) là hai góc ở vị trí so le trong

nên AD//BC(Dấu hiệu nhận biết hai đường thẳng song song)

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt...
Đọc tiếp

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. C/M tam giác BAM bằng tam giác ABC d) CMR: AB là tia phân giác cuả góc DAM Bài 3: Cho tam giác ABC vuông ở A và AB=AC.Gọi K là trung điểm của BC a) C/M: tam giác AKB bằng tam giác AKC b) C/M: AK vuông góc với BC c) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E.C/M EK song song với AK Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR a) BD= CE b) tam giác OEB bằng tam giác ODC c) AO là tia phân giác cua góc BAC

1
22 tháng 11 2019

1. Câu hỏi của 1234567890 - Toán lớp 7 - Học toán với OnlineMath