Cho ∆ABC vuông tại A (AB<AC), phân giác BD (D∈AC) cắt đường cao AH tại K (H∈BC)
a) Chứng minh ∆BHK~∆BAD và ∆BAK~∆BCD
b) Chứng minh HK.DC=AK²
c) Gọi M là trung điểm của KD. Kẻ tia Bx // AM, tia Bx cắt AH tại N. C/m HK.AN=AK.HN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)
Bài 1:
Áp dụng định lí Pytago vào ΔABC vuông tại B, ta được:
\(AC^2=BC^2+AB^2\)
\(\Leftrightarrow AB^2=AC^2-BC^2=12^2-8^2=80\)
hay \(AB=4\sqrt{5}cm\)
Vậy: \(AB=4\sqrt{5}cm\)
Bài 2:
Áp dụng định lí Pytago vào ΔMNP vuông tại N, ta được:
\(MP^2=MN^2+NP^2\)
\(\Leftrightarrow MN^2=MP^2-NP^2=\left(\sqrt{30}\right)^2-\left(\sqrt{14}\right)^2=16\)
hay MN=4cm
Vậy: MN=4cm
Bài 1 :
- Áp dụng định lý pi ta go ta được :\(BA^2+BC^2=AC^2\)
\(\Leftrightarrow AB^2+8^2=12^2\)
\(\Leftrightarrow AB=4\sqrt{5}\) ( cm )
Vậy ...
Bài 2 :
- Áp dụng định lý pi ta go vào tam giác MNP vuông tại N có :
\(MN^2+NP^2=MP^2\)
\(\Leftrightarrow MN^2+\sqrt{14}^2=\sqrt{30}^2\)
\(\Leftrightarrow MN=4\) ( đvđd )
Vậy ...
a, Xét \(\Delta BHK\) và \(\Delta BAD\) có :
\(\widehat{B_2}=\widehat{B_1}\left(gt\right)\)
\(\widehat{BHK}=\widehat{BAD}=90^o\)
\(\Rightarrow\) \(\Delta BHK\sim\Delta BAD\left(g.g\right)\)
Xét \(\Delta BAK\) và \(\Delta BCD\) có :
\(\widehat{B_1}=\widehat{B_2}\left(gt\right)\)
\(\widehat{BAK}=\widehat{BCD}\) ( cùng phụ với \(\widehat{ABC}\) )
\(\Rightarrow\) \(\Delta BAK\sim\Delta BCD\left(g.g\right)\)
b, Ta có : \(\Delta BHK\sim\Delta BAD\) ( câu a )
\(\Rightarrow\) \(\frac{HK}{AD}=\frac{HB}{BA}\)
Mà BK là phân giác \(\widehat{ABH}\)
\(\Rightarrow\) \(\frac{HB}{BA}=\frac{HK}{AK}\)
\(\Rightarrow\) \(\frac{HK}{AD}=\frac{HK}{AK}\) \(\Rightarrow\) \(AD=AK\)
Lại có : \(\Delta BAK\sim\Delta BCD\) ( câu a )
\(\Rightarrow\) \(\frac{AK}{CD}=\frac{BK}{BD}\)
Mà \(\frac{BK}{BD}=\frac{HK}{AD}\left(\Delta BHK\sim\Delta BAD\right)\)
\(\Rightarrow\) \(\frac{AK}{CD}=\frac{HK}{AD}\)
\(\Rightarrow\) \(AK.AD=HK.DC\) Mặt khác : AD = AK
\(\Rightarrow\) \(AK^2=HK.DC\)