Cho 2 số dương a, b có tổng bằng 2. Tính giá trị nhoe nhất của biểu thức:
\(\left(1-\frac{4}{a^2}\right).\left(1-\frac{4}{b^2}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{\left(4-a^2\right)\left(4-b^2\right)}{a^2b^2}=\frac{\left[\left(a+b\right)^2-a^2\right]\left[\left(a+b\right)^2-b^2\right]}{a^2b^2}\)
\(=\frac{b\left(2a+b\right).a\left(a+2b\right)}{a^2b^2}=\frac{\left(2a+b\right)\left(a+2b\right)}{ab}=\frac{2a^2+2b^2+5ab}{ab}=2\left(\frac{a}{b}+\frac{b}{a}\right)+5\ge2.2\sqrt{\frac{ab}{ab}}+5=9\)
Dấu "=" xảy ra khi \(a=b=1\)
Rút gọn Q = a2 + b2 + a2 + b2 -6a/b - 6b/a + 9/a2 + 9/b2 = a2 - 6a/b + 9/b2 + b2 - 6b/a + 9/a2 + a2 + b2
= ( a - 3/b )2 + (b - 3/a )2 + a2 + b2 = (a - 3/b )2 + 2(ab - 3) + b2 + (b - 3/a)2 - 2(ab - 3) + a2 = (a - 3/b ) ^2 +2(a - 3/b)b + b^2 + (b - 3/a)^2 -2(b-3/a)a +a^2 = (a -3/b +b )^2 + (b-3/a-a)^2 = (2-3/b)^2 + (b-3/a-a)^2 mik chỉ bik làm tới đây thôi bạn thông cảm mak hình như giá trị nhỏ nhất của Q là 25 tại a=3/2,b=1/2 hoặc a=3/2,b=1/2
Xét biểu thức \(\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}\)
\(=\frac{\left(a+2\right)\left(b+2\right)+\left(b+2\right)\left(c+2\right)+\left(c+2\right)\left(a+2\right)}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\)
\(=\frac{\left(ab+bc+ca\right)+4\left(a+b+c\right)+12}{abc+2\left(ab+bc+ca\right)+4\left(a+b+c\right)+8}\)
\(=\frac{\left(ab+bc+ca\right)+4\left(a+b+c\right)+12}{\left(abc+ab+bc+ca\right)+\left(ab+bc+ca\right)+4\left(a+b+c\right)+8}\)
\(=\frac{\left(ab+bc+ca\right)+4\left(a+b+c\right)+12}{4+\left(ab+bc+ca\right)+4\left(a+b+c\right)+8}\)(Do \(ab+bc+ca+abc=4\)theo giả thiết)
\(=\frac{\left(ab+bc+ca\right)+4\left(a+b+c\right)+12}{\left(ab+bc+ca\right)+4\left(a+b+c\right)+12}=1\)(***)
Với x,y dương ta có 2 bất đẳng thức phụ sau:
\(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)(*)
\(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)(**)
Áp dụng (*) và (**), ta có:
\(\frac{1}{\sqrt{2\left(a^2+b^2\right)}+4}\le\frac{1}{a+b+4}=\frac{1}{\left(a+2\right)+\left(b+2\right)}\)
\(\le\frac{1}{4}\left(\frac{1}{a+2}+\frac{1}{b+2}\right)\)(1)
Tương tự ta có: \(\frac{1}{\sqrt{2\left(b^2+c^2\right)}+4}\le\frac{1}{4}\left(\frac{1}{b+2}+\frac{1}{c+2}\right)\)(2)
\(\frac{1}{\sqrt{2\left(c^2+a^2\right)}+4}\le\frac{1}{4}\left(\frac{1}{c+2}+\frac{1}{a+2}\right)\)(3)
Cộng từng vế của các bất đẳng thức (1), (2), (3), ta được:
\(P\le\frac{1}{2}\left(\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}\right)=\frac{1}{2}\)(theo (***))
Đẳng thức xảy ra khi \(a=b=c\)
Bg
Hai số dương a, b có tổng bằng 2 --> a = 1 và b = 1 (vì 2 = 2 + 0 = 1 + 1; số dương là số > 0 nên a = 1 và b = 1)
Thay giá trị của a và b vào:
\(\left(1-\frac{4}{a^2}\right).\left(1-\frac{4}{b^2}\right)=\left(1-\frac{4}{1^2}\right).\left(1-\frac{4}{1^2}\right)=\left(1-4\right).\left(1-4\right)=-3.\left(-3\right)=9\)
Vậy giá trị nhỏ nhất của biểu thức trên là 9.
Bài làm:
Ta có: \(\left(1-\frac{4}{a^2}\right).\left(1-\frac{4}{b^2}\right)=\frac{a^2-4}{a^2}.\frac{b^2-4}{b^2}=\frac{\left(a-2\right)\left(a+2\right)}{a^2}.\frac{\left(b-2\right)\left(b+2\right)}{b^2}\left(1\right)\)
Thay \(2=a+b\)vào \(\left(1\right)\)
\(\left(1\right)=\frac{\left(a-a-b\right)\left(a+a+b\right)}{a^2}.\frac{\left(b-a-b\right)\left(b+a+b\right)}{b^2}\)
\(=\frac{\left(-b\right).\left(2a+b\right)}{a^2}.\frac{\left(-a\right).\left(2b+a\right)}{b^2}\)
\(=\frac{\left(2a+b\right)\left(2b+a\right)}{ab}\)
\(=\frac{2a^2+2b^2+5ab}{ab}\ge\frac{4ab+5ab}{ab}=9\)
Dấu "=" xảy ra khi: \(a=b=1\)
Vậy Min=9 khi a=b=1