K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2020

\(=\left(1-1\right)+\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+...+\left(1-\frac{1}{100}\right)\)

\(=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\)

100=10*10

100=1000:10

100 câu nói hay về cuộc sống 

6 tháng 5 2018

Ta có :

\(100-\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{100}\right)=1.100-\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{100}\right)\)

                                                                             \(=\left(1-1\right)+\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+.......+\left(1-\frac{1}{100}\right)\)

                                                                              \(=\frac{1}{2}+\frac{2}{3}+.........+\frac{99}{100}\)

Vậy \(100-\left(1+\frac{1}{2}+\frac{1}{3}+......+\frac{1}{100}\right)=\frac{1}{2}+\frac{2}{3}+.....+\frac{99}{100}\left(ĐPCM\right)\)

2 tháng 12 2017

1,2 : 10 = 0,12
4,6 : 1000 = 0,0046
781,5 : 100 = 7,815
15,4 : 100 = 0,154
45,82 : 10 = 4,582
15632 : 1000 = 15,632
hok tốt nha ^_^

2 tháng 12 2017

\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+.....+\frac{1}{3^{99}}+\frac{1}{3^{100}}\)

\(\frac{A}{3}=\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}.....+\frac{1}{3^{100}}+\frac{1}{3^{101}}\)

\(A-\frac{A}{3}=\frac{2A}{3}=\frac{1}{3}=\frac{1}{3}-\frac{1}{3^{101}}\Rightarrow2A=1-\frac{1}{3^{100}}\Rightarrow A=\frac{1}{2}-\frac{1}{2.3^{100}}< \frac{1}{2}\)

26 tháng 1 2016

nhầm tớ lộn sang bài khác sorry

27 tháng 1 2016

trình bày cách giải giùm với nhé