K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2016

Trä Loi Bhangra nhé

21 tháng 7 2016

S = 2/1×2 + 2/2×3 + 2/3×4 + 2/4×5 + ... + 2/101×102

B = 2 × (1/1×2 + 1/2×3 + 1/3×4 + 1/4×5 + ... + 1/101×102)

B = 2 × (1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/101 - 1/102)

B = 2 × (1 - 1/102)

B = 2 × 101/102

B = 101/51

AH
Akai Haruma
Giáo viên
23 tháng 4 2018

Lời giải:

Ta có:

\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

\(A=\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{100-99}{99.100}\)

\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{100}\)

\(A=\frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)

Vậy ta có đpcm.

21 tháng 5 2021

Ta có :\(B=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.\frac{4^2}{4.5}.....\frac{98^2}{98.99}=\frac{\left(1.2.3.4...98\right).\left(1.2.3.4...98\right)}{\left(1.2.3.4...98\right).\left(2.3.4.5...99\right)}=\frac{1}{99}\)

Lại có A = \(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}=1-\frac{1}{99}=\frac{98}{99}\)

Lại có \(A:B=\frac{98}{99}:\frac{1}{99}=98\)

=> A = 98B

21 tháng 5 2021

các bạn có  về sweet home

15 tháng 9 2017

câu a) (a^2+2a+a+2)(a+3)-(a^2+a)(a+2)= (3a+3)(a+2)

suy ra: a^3+3x^2+2a^2+6a+a^2+3a+2a+6-a^3-2x^2-a^2-2a= 3a^2+6a+3a+6

3a^2+9a+6=3a^2+9a+6

câu b) 

17 tháng 9 2017

^ là gì vậy bạn

29 tháng 2 2016

Phần chứng tỏ quy đồng lên rồi tính là ra

Còn phần tính S thì áp dụng tính chất vừa chứng tỏ để tách ra

Kết quả là 49/50

19 tháng 4 2016

49/50

30 tháng 10 2016

\(S=\frac{2}{1\times2}+\frac{2}{2\times3}+\frac{2}{3\times4}+...+\frac{2}{98\times99}+\frac{2}{99\times100}\)

\(S=2\times\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{98\times99}+\frac{1}{99\times100}\right)\)

\(S=2\times\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)

\(S=2\times\left(1-\frac{1}{100}\right)\)

\(S=2\times\frac{99}{100}\)

\(S=\frac{99}{50}\)

30 tháng 10 2016

\(S=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{98.99}+\frac{2}{99.100}\)

\(S=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)

\(S=2.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}+\frac{1}{100}\right)\)

\(S=2.\left(\frac{1}{1}-\frac{1}{100}\right)\\ S=2.\left(\frac{100}{100}+\frac{-1}{100}\right)\\ S=2.\frac{99}{100}\\ S=\frac{99}{50}\)