cho tam giác ABC vuông tại C có CH vg AB
a)biết ab=13,bh=5.tính sinb,sinc
b)CH=10,CA=12,5 tính cosa cosb
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng đlí Py - ta - go cho tam giác HAB ( ^H =90^o )
Ta có : \(AB^2=AH^2+BH^2\)
\(13^2=AH^2+5^2\)
\(AH^2=13^2-5^2\)
\(\Rightarrow AH=\sqrt{13^2-5^2}\)
\(\sin B=\frac{AH}{AB}=\frac{\sqrt{13^2-5^2}}{13}\approx0,923\)
Áp dụng hệ thức lượng cho tam giác ABC( ^A = 90^o ) , đường cao AH , ta có :
\(AH^2=BH.HC\Rightarrow HC=\frac{AH^2}{BH}=\frac{12^2}{5}=28,8\)
=> BC = 5 + 28,8 = 33,8
\(\sin C=\frac{AB}{BC}=\frac{13}{33,8}\approx0,384\)
Vậy : \(\sin B\approx0,923\)
\(\sin C\approx0,384\)
a) Xét ΔAHB có ^AHB = 900 ( AH ⊥ BC ) => ΔAHB vuông tại H
Khi đó : \(\sin B=\sin\widehat{ABH}=\frac{AH}{AB}=\frac{5}{13};\cos B=\cos\widehat{ABH}=\frac{BH}{AB}=\frac{\sqrt{AB^2-AH^2}\left(pythagoras\right)}{AB}=\frac{12}{13}\)
ΔABC vuông tại A => ^B + ^C = 900 => \(\sin C=\cos B=\frac{12}{13}\)
b) Áp dụng hệ thức lượng trong tam giác vuông cho ΔABC vuông tại A ta có :
\(AH^2=BH\cdot HC\Rightarrow AH=\sqrt{BH\cdot HC}=2\sqrt{3}\)
cmtt như a) ta có được ΔAHC vuông tại H
Khi đó : \(\sin C=\sin\widehat{ACH}=\frac{AH}{AC}=\frac{AH}{\sqrt{AH^2+HC^2}}=\frac{\sqrt{21}}{7};\cos C=\cos\widehat{ACH}=\frac{CH}{AC}=\frac{CH}{\sqrt{AH^2+HC^2}}=\frac{2\sqrt{7}}{7}\)ΔABC vuông tại A => ^B + ^C = 900 => \(\sin B=\cos C=\frac{2\sqrt{7}}{7}\)
a, Áp dụng hệ thức AB^2=BH.BC
<=> 13^2=5.BC
=> BC=33,8
áp dụng định lý pytago vào tam giác ABC
AB^2+AC^2=BC^2
<=> 13^2+AC^2=33.8^2
=> AC=31,2
\(\sin B=\frac{AC}{BC}=\frac{31,2}{33,8}=\frac{12}{13}\)
\(\sin C=\frac{AB}{BC}=\frac{13}{33,8}=\frac{5}{13}\)
a) Áp dụng đlí Py - ta - go cho tam giác HAB ( \(\widehat{H}=90^o\))
Ta có : \(AB^2=AH^2+BH^2\)
\(13^2=AH^2+5^2\)
\(AH^2=13^2-5^2\)
\(\Leftrightarrow AH=\sqrt{13^2-5^2}\)
\(\sin B=\frac{AH}{AB}=\frac{\sqrt{13^2-5^2}}{13}\approx0,923\)
Áp dụng hệ thức lượng cho tam giác ABC ( \(\widehat{A}=90^o\)) , đường cao AH , ta có :
\(AH^2=BH.HC\Rightarrow HC=\frac{HC^2}{BH}=\frac{12^2}{5}=28,8\)
\(\Rightarrow BC=5+28,8=33,8\)
\(\sin C=\frac{AB}{BC}=\frac{13}{33,8}\approx0,384\)
Vậy : \(\sin B\approx0,923\)
\(\sin C\approx0,384\)
a: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH^2=HB\cdot HC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\sqrt{13}\left(cm\right)\\AC=3\sqrt{13}\left(cm\right)\\AH=6\left(cm\right)\end{matrix}\right.\)