Cho các số thực a,b,c thoả mãn điều kiện:
a+b+c=3 chứng minh rằng:
(a+b)2(b+c)2>12abc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức Cô si cho hai số dương ta có:
(a2 + b2) + (b2 + c2) + (c2 + a2) ≥ 2ab + 2bc + 2ca
=> 2(a2 + b2 + c2 ) ≥ 2 (ab + bc + ca) (1) (a2 + 1) + (b2 + c2) + (c2 + a2) ≥ 2a + 2b + 2c
=> a2 + b2 + c2 + 3 ≥ 2(a + b + c) (2)
Cộng các vế của (1) và (2) ta có:
3 ( a2 + b2 + c2 ) + 3 ≥ 2 (ab + bc + ca + a + b + c)
=> 3( a2 + b2 + c2 ) + 3 ≥ 12 => a2 + b2 + c2 ≥ 3.
Ta có: (a^3/b + ab ) + ( b^3/c + bc ) + ( c^3/a + ca)≥ 2(a2 + b2 + c2) (CÔ SI)
<=>a^3/b + b^3/c + c^3/a +ab + bc + ac ≥ 2(a2 + b2 + c2)
Vì a2 + b2 + c2 ≥ ab + bc + ca => a^3 + b^3 + c^3 ≥ a2 + b2 + c2 ≥ 3 (đpcm).
Áp dụng bất đẳng thức cô-si cho hai số dương ta có:
\(\left(a^2+b^2\right)+\left(b^2+c^2\right)+\left(c^2+a^2\right)\ge2ab+2bc+2ca\)
\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\) (1)
\(\left(a^2+b^2\right)+\left(b^2+c^2\right)+\left(c^2+a^2\right)\ge2a+2b+2c\)
\(\Rightarrow a^2+b^2+c^2+3\ge2\left(a+b+c\right)\) (2)
Cộng (1) với (2)
\(3\left(a^2+b^2+c^2\right)+3\ge2\left(ab+bc+ca+a+b+c\right)\)
\(\Rightarrow3\left(a^2+b^2+c^2\right)+3\ge12\)
\(\Rightarrow a^2+b^2+c^2\ge3\)
Ta có: \(\left(\dfrac{a^3}{b}+ab\right)+\left(\dfrac{b^3}{c}+bc\right)+\left(\dfrac{c^3}{a}+ca\right)\ge2\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}+ab+bc+ca\ge2\left(a^2+b^2+c^2\right)\)
Vì \(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Rightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge a^2+b^2+c^2\ge3\) (đpcm).
\(\frac{ab}{a+b}=\frac{bc}{b+c}\)
<=> \(\frac{10a+b}{a+b}=\frac{10b+c}{b+c}\)
<=> \(\frac{9a}{a+b}=\frac{9b}{b+c}\)
<=> \(\frac{a}{a+b}=\frac{b}{b+c}\)
=> a(b + c) = b(a + b)
<=> ab + ac = ba + b2
=> ac = b2 (đpcm)
Do \(0\le a;b;c\le2\)
\(\Rightarrow abc+\left(2-a\right)\left(2-b\right)\left(2-c\right)\ge0\)
\(\Leftrightarrow2\left(ab+bc+ca\right)-4\left(a+b+c\right)+8\ge0\)
\(\Leftrightarrow2\left(ab+bc+ca\right)\ge4\)
\(\Leftrightarrow\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)\ge4\)
\(\Leftrightarrow9-\left(a^2+b^2+c^2\right)\ge4\)
\(\Leftrightarrow a^2+b^2+c^2\le5\)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(0;1;2\right)\) và các hoán vị
Trước hết bạn chứng minh : \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\Rightarrow a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}\) (Chứng minh bằng biến đổi tương đương)
Áp dụng BĐT AM-GM ta có : \(\frac{1}{2-a}+\frac{1}{2-b}+\frac{1}{2-c}\ge\frac{9}{6-\left(a+b+c\right)}\ge\frac{9}{6-\sqrt{3\left(a^2+b^2+c^2\right)}}=\frac{9}{6-3}=3\)
Dễ thấy \(0< a,b,c< 2\)
Ta có:
\(\frac{1}{2-a}\ge\frac{a^2+1}{2}\Leftrightarrow a\left(a-1\right)^2\ge0\)
Tương tự với các cái tương tự, ta được:
\(\frac{1}{2-a}+\frac{1}{2-b}+\frac{1}{2-c}\ge\frac{a^2+1+b^2+1+c^2+1}{2}=3\)(Đpcm)
Dấu = khi a=b=c=1