Hai bạn A và B lên bảng viết. Mỗi bạn viết ngẫu nhiên 1 số tự nhiên gồm 3 chữ số. Có bao nhiêu cách viết sao cho 3 chữ số có mặt trong số của bạn A giống 3 chữ số của bạn B và tổng 3 chữ số chia hết cho 3 ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mỗi bạn có 16 cách viết nên số phần tử không gian mẫu là 16^3.
Gọi A là biến cố '3 số được viết ra có tổng chia hết cho 3'
Các số tự nhiên từ 1 đến 16 chia thành 3 nhóm:
Nhóm I gồm các số tự nhiên chia hết cho 3 gồm 5 số.
Nhóm II gồm các số tự nhiên cho 3 dư 1 gồm 6 số.
Nhóm III gồm các số tự nhiên cho 3 dư 2 gồm 5 số.
Để ba số có tổng chia hết cho 3 thì xảy ra các trường hơp sau:
Cả ba bạn viết được số thuộc nhóm I có 5^3 cách.
Cả ba bạn viết được số thuộc nhóm II có 6^3 cách.
Cả ba bạn viết được số thuộc nhóm III có 5^3 cách.
Mỗi bạn viết được một số thuộc một nhóm có 3!×(5×6×5)
=> n(A) = 5^3 + 6^3 + 5^3 + 3!×(5×6×5) = 1366
Vậy P(A) = 1366/16^3
Vì theo mình luận lập.
Nếu viết đến 18 chữ số. Tính tổng 18 chữ số đó.
Có các khả năng sau.
Tổng 18 chữ số đó chia hết 9 hoặc chia 9 dư 1 -) 8.
A là người viết số 19.
Sẽ viết như sau.
Nếu tổng 18 chữ số chia hết 9 thì viết chữ số 19 tránh 4 hoặc 5.
+ Nếu chia 9 dư 1 thì chữ số 19 tránh 3,4,5
+ Dư 2 tránh viết 1
+ Dư 4 tránh viết 5
+ Dư 5 viết 4
+ Dư 6 viết 3, 4, 5 ( tránh viết 1,2)
+ Dư 7 viết 2, 3, 4, 5( tránh viết 1)
+ Dư 8 viết 1, 2, 3, 4( tránh viết 5)
Để B viết số 20 thì dù chọn chữ số nào trong 5 chữ số thì cũng không chia hết 9
Mình chỉ thắc mắc trường hợp dư 3
Ta có:
Nếu viết đến 18 chữ số. Tính tổng 18 chữ số đó.
Có các khả năng sau.
Tổng 18 chữ số đó chia hết 9 hoặc chia 9 dư 1 -) 8.
A là người viết số 19.
Sẽ viết như sau.
Nếu tổng 18 chữ số chia hết 9 thì viết chữ số 19 tránh 4 hoặc 5.
+ Nếu chia 9 dư 1 thì chữ số 19 tránh 3,4,5
+ Dư 2 tránh viết 1
+ Dư 4 tránh viết 5
+ Dư 5 viết 4
+ Dư 6 viết 3, 4, 5 ( tránh viết 1,2)
+ Dư 7 viết 2, 3, 4, 5( tránh viết 1)
+ Dư 8 viết 1, 2, 3, 4( tránh viết 5)
Để B viết số 20 thì dù chọn chữ số nào trong 5 chữ số thì cũng không chia hết 9
trường hợp dư 3
Ủa đề bài ko yêu cầu 3 chữ số khác nhau à? Thế thì dài lắm, rất phức tạp :(
Cách suy nghĩ về cơ bản như sau: gọi số A viết là \(\overline{abc}\), như vậy với mỗi số A viết B có 6 cách viết tương ứng (hoán vị 3 chữ số của A). Nhưng có 2 vấn đề rắc rối: 1/ trong các số a;b;c có mặt số 0, do đó khi hoán vị có khả năng 0 sẽ bị đẩy ra đứng đầu (không phù hợp). 2/ Trong có các a;b;c có ít nhất 2 chữ số giống nhau =>khi hoán vị sẽ bị lặp lại kết quả => thừa nghiệm. Do đó cần chia ra rất nhiều trường hợp và trong mỗi trường hợp lại chia nhỏ các trường hợp bên trong:
TH1: \(\overline{abc}\) chứa 2 số 0 \(\Rightarrow b=c=0\Rightarrow a\) có 3 cách chọn \(\Rightarrow\) có 3 số. Với mỗi số A viết, B có đúng 1 cách viết thỏa mãn (giống hệt A)
TH2: \(\overrightarrow{abc}\) chứa 1 số 0 tại vị trí b hoặc c. Giả sử \(c=0;b\ne0\)
\(\Rightarrow\)có \(3.3+3.3+3.3=27\) số. Hoán vị b và c có 2 cách \(\Rightarrow\) có \(27.2=54\) số, trong đó có 3 trường hợp một cặp số giống nhau (33;66;99) và 51 trường hợp 3 số đôi một khác nhau
- Nếu 3 chữ số A viết có 1 cặp giống nhau, tương ứng B sẽ có 2 cách viết \(\Rightarrow\) có \(3.2=6\) cách
- Nếu 3 chữ số A viết đôi một khác nhau, ứng với mỗi số B có 4 cách viết \(\Rightarrow51.4=204\) cách
\(\Rightarrow\) Ở trường hợp này có \(204+6=210\) cách
TH3: \(\overline{abc}\) không chứa số 0 nào
TH3.1: 3 chữ số a;b;c giống nhau \(\Rightarrow\) A có 9 cách viết, ứng với 1 số B cũng chỉ có 1 cách duy nhất \(\Rightarrow\) có 9 cách
TH3.2: 3 chữ số a;b;c có đúng 1 cặp giống nhau \(\Rightarrow\) a;b;c cùng số dư khi chia cho 3.
Có 9 cách chọn 1 cặp số giống nhau, với mỗi cặp sẽ có 2 cách chọn số còn lại \(\Rightarrow\) 18 cách chọn. Với mỗi số lại có 3 cách hoán vị \(\Rightarrow18.3=54\) cách để A viết
Với mỗi số A viết, B có 3 cách viết tương ứng
\(\Rightarrow\) có \(54.3=162\) cách
TH3.3: 3 chữ số a;b;c đôi một khác nhau:
- Cả 3 số đều chia hết cho 3 \(\Rightarrow\) \(1.3!=6\) cách
- Cả 3 số chia 3 cùng số dư: \(2.3!=12\) cách
- 1 số chia 3 dư 1, 1 số chia 3 dư 2, 1 số chia hết cho 3: có \(3.3.3.3!=162\) cách
\(\Rightarrow\) có \(6+12+162=180\) cách để A viết
Với mỗi số A viết, B có \(3!=6\) cách viết tương ứng
\(\Rightarrow\) Có \(180.6=1080\) cách
Vậy tổng cộng có: \(3+210+9+162+1080=1464\) cách viết
Phức tạp quá nên chẳng biết có thiếu chỗ nào ko :D