K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2020

\(B=2\Sigma_{sym}\sqrt{ab}+3\left(a+b+c+d\right)\le6\left(a+b+c+d\right)\le6\)

6 tháng 6 2019

a) \(A=\left(\sqrt{a}+\sqrt{b}\right)^2\le\left(\sqrt{a}+\sqrt{b}\right)^2+\left(\sqrt{a}-\sqrt{b}\right)^2=2a+2b\le2\)

Vậy GTLN của A là 2 \(\Leftrightarrow\hept{\begin{cases}\sqrt{a}=\sqrt{b}\\a+b=1\end{cases}\Leftrightarrow a=b=\frac{1}{2}}\)

b) Ta có : \(\left(\sqrt{a}+\sqrt{b}\right)^4\le\left(\sqrt{a}+\sqrt{b}\right)^4+\left(\sqrt{a}-\sqrt{b}\right)^4=2\left(a^2+b^2+6ab\right)\)

Tương tự : \(\left(\sqrt{a}+\sqrt{c}\right)^4\le2\left(a^2+c^2+6ac\right)\)

\(\left(\sqrt{a}+\sqrt{d}\right)^4\le2\left(a^2+d^2+6ad\right)\)

\(\left(\sqrt{b}+\sqrt{c}\right)^4\le2\left(b^2+c^2+6bc\right)\)

\(\left(\sqrt{b}+\sqrt{d}\right)^4\le2\left(b^2+d^2+6bd\right)\)

\(\left(\sqrt{c}+\sqrt{d}\right)^4\le2\left(c^2+d^2+6cd\right)\)

Cộng các vế lại, ta được :

\(B\le6\left(a^2+b^2+c^2+d^2+2ab+2ac+2ad+2bd+2cd+2bc\right)=6\left(a+b+c+d\right)^2\)

\(\Rightarrow B\le6\)

Vậy GTLN của B là 6 \(\Leftrightarrow\hept{\begin{cases}\sqrt{a}=\sqrt{b}=\sqrt{c}=\sqrt{d}\\a+b+c+d=1\end{cases}}\Leftrightarrow a=b=c=d=\frac{1}{4}\)

13 tháng 6 2019

Ta có: \(\left(\sqrt{a}+\sqrt{b}\right)^4+\left(\sqrt{a}-\sqrt{b}\right)^4\)

 \(=\left(a+2\sqrt{ab}+b\right)^2+\left(a-2\sqrt{ab}+b\right)^2\)

                                             \(=a^2+4ab+b^2+4a\sqrt{ab}+4b\sqrt{ab}+2ab+a^2+b^2-4a\sqrt{ab}-4b\sqrt{ab}+2ab\)

\(=2\left(a^2+b^2+6ab\right).\)(1)

Mà \(\left(\sqrt{a}+\sqrt{b}\right)^4\le\left(\sqrt{a}+\sqrt{b}\right)^4+\left(\sqrt{a}-\sqrt{b}\right)^4\)(2)

Từ (1) và (2) suy ra:

\(\left(\sqrt{a}+\sqrt{b}\right)^4\le2\left(a^2+b^2+6ab\right).\)

Chứng minh tương tự ta cũng có:

\(\left(\sqrt{a}+\sqrt{c}\right)^4\le2\left(a^2+c^2+6ac\right)\)

\(\left(\sqrt{a}+\sqrt{d}\right)^4\le2\left(a^2+d^2+6ad\right)\)

\(\left(\sqrt{b}+\sqrt{c}\right)^2\le2\left(b^2+c^2+6bc\right)\)

\(\left(\sqrt{b}+\sqrt{d}\right)^4\le2\left(b^2+d^2+6bd\right)\)

\(\left(\sqrt{c}+\sqrt{d}\right)^4\le2\left(c^2+d^2+6cd\right)\)

Suy ra :

\(A\le6\left(a^2+b^2+c^2+d^2+2ab+2ac+2ad+2bc+2bd+2cd\right)\)

\(=6\left(a+b+c+d\right)^2\)

\(\le6.1^2=6\)

Vậy giá trị lớn nhất của \(A=6\Leftrightarrow\hept{\begin{cases}\sqrt{a}=\sqrt{b}=\sqrt{c}=\sqrt{d}\\a+b+c+d=1\end{cases}}\Leftrightarrow a=b=c=d=\frac{1}{4}.\)

23 tháng 9 2021

Ta có: \(a+b+c+\sqrt{abc}=4\)

\(\Rightarrow4a+4b+4c+4\sqrt{abc}=16\)

\(\Rightarrow4a+4\sqrt{abc}=16-4b-4c\)

\(\sqrt{a\left(4-b\right)\left(4-c\right)}=\sqrt{a\left(16-4b-4c+bc\right)}=\sqrt{a\left(4a+4\sqrt{abc}+bc\right)}\)

\(=\sqrt{4a^2+4a\sqrt{abc}+abc}=\sqrt{\left(2a+\sqrt{abc}\right)^2}=\left|2a+\sqrt{abc}\right|=2a+\sqrt{abc}\)

Tương tự: 

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{b\left(4-a\right)\left(4-c\right)}=2b+\sqrt{abc}\\\sqrt{c\left(4-a\right)\left(4-b\right)}=2c+\sqrt{abc}\end{matrix}\right.\)

\(\Rightarrow A=\sqrt{a\left(4-b\right)\left(4-c\right)}+\sqrt{b\left(4-c\right)\left(4-a\right)}+\sqrt{c\left(4-a\right)\left(4-b\right)}-\sqrt{abc}=2a+2b+2c+3\sqrt{abc}-\sqrt{abc}=2\left(a+b+c+\sqrt{abc}\right)=8\)

23 tháng 9 2021

Ta có \(\sqrt{a\left(4-b\right)\left(4-c\right)}=\sqrt{a\left(a+c+\sqrt{abc}\right)\left(4-c\right)}\)

\(=\sqrt{\left(a^2+ac+a\sqrt{abc}\right)\left(4-c\right)}\\ =\sqrt{4a^2+ac\left(4-\sqrt{abc}-a-c\right)+4a\sqrt{abc}}\\ =\sqrt{4a^2+4a\sqrt{abc}+abc}=\sqrt{\left(2a+\sqrt{abc}\right)^2}\\ =2a+\sqrt{abc}\left(a,b,c>0\right)\)

Cmtt \(\sqrt{b\left(4-c\right)\left(4-a\right)}=2b+\sqrt{abc};\sqrt{c\left(4-b\right)\left(4-a\right)}=2c+\sqrt{abc}\)

\(\Rightarrow A=2\left(a+b+c\right)+3\sqrt{abc}-\sqrt{abc}=2\left(a+b+c\right)+2\sqrt{abc}\\ A=2\left(a+b+c+\sqrt{abc}\right)=2\cdot4=8\)

30 tháng 8 2016

cosi đi 

30 tháng 8 2016

trong quyển nâng cao phát triển toán 9 đó

rất bổ ích đấy mua về mà đọc 

17 tháng 10 2015

\(B=\left[\left(\sqrt{a}+\sqrt{b}\right)^4+\left(\sqrt{c}+\sqrt{d}\right)^4\right]+\left[\left(\sqrt{a}+\sqrt{c}\right)^4+\left(\sqrt{b}+\sqrt{d}\right)^4\right]+\)

\(\left[\left(\sqrt{a}+\sqrt{d}\right)^4+\left(\sqrt{b}+\sqrt{c}\right)^4\right]\)\(\ge\frac{\left(a+b+2\sqrt{ab}+c+d+2\sqrt{cd}\right)^2+\left(a+c+2\sqrt{ac}+b+d+2\sqrt{bd}\right)^2+\left(a+d+2\sqrt{ad}+b+c+2\sqrt{bc}\right)^2}{2}\)

\(\ge\frac{\left(3a+3b+3c+3d+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca}+2\sqrt{ad}+2\sqrt{cd}+2\sqrt{bd}\right)^2}{6}\)

\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2+\left(\sqrt{b}+\sqrt{c}\right)^2+\left(\sqrt{c}+\sqrt{d}\right)^2+\left(\sqrt{a}+\sqrt{c}\right)^2+\left(\sqrt{a}+\sqrt{d}\right)^2+\left(\sqrt{b}+\sqrt{d}\right)^2}{6}\)

tiếp tục sử dụng như hỗi nãy ta có: 

\(\ge\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d}\right)^2}{2}\)

14 tháng 3 2020

Bài 1 :

Áp dụng bất đẳng thức Cauchy ta có :

\(\frac{\left(x-1\right)^2}{z}+\frac{z}{4}\ge2\sqrt{\frac{\left(x-1\right)^2}{z}\frac{z}{4}}=\left|x-1\right|=1-x\)

\(\frac{\left(y-1\right)^2}{x}+\frac{x}{4}\ge2\sqrt{\frac{\left(y-1\right)^2}{x}\frac{x}{4}}=\left|y-1\right|=1-y\)

\(\frac{\left(z-1\right)^2}{y}+\frac{y}{4}\ge2\sqrt{\frac{\left(z-1\right)^2}{y}\frac{y}{4}}=\left|z-1\right|=1-z\)

\(\Rightarrow\frac{\left(x-1\right)^2}{z}+\frac{z}{4}+\frac{\left(y-1\right)^2}{x}+\frac{x}{4}+\frac{\left(z-1\right)^2}{y}+\frac{y}{4}\ge1-x+1-y+1-z\)

\(\Leftrightarrow\frac{\left(x-1\right)^2}{z}+\frac{\left(y-1\right)^2}{x}+\frac{\left(z-1\right)^2}{y}\ge3-\left(x+y+z\right)-\frac{x+y+z}{4}=3-2-\frac{2}{4}=\frac{1}{2}\)

Vậy GTNN của \(A=\frac{1}{2}\Leftrightarrow x=y=z=\frac{2}{3}\)

15 tháng 9 2017

ta có \(a+b+c+\sqrt{abc}=4\Rightarrow4a+4b+4a+4\sqrt{abc}\)

=> \(4a+4\sqrt{abc}=16-4b-4c\Leftrightarrow4a+4\sqrt{abc}+bc=16-4b-4c+bc\)

=> \(\left(2\sqrt{a}+\sqrt{bc}\right)^2=\left(4-b\right)\left(4-c\right)\Rightarrow a\left(4-b\right)\left(4-c\right)=a\left(2\sqrt{a}+\sqrt{bc}\right)^2\)

=> \(\sqrt{a\left(4-b\right)\left(4-c\right)}=\sqrt{a}\left(2\sqrt{a}+\sqrt{bc}\right)=2a+\sqrt{abc}\)

tương tự như thế thay vào , thì A=8

16 tháng 9 2018

Ta có:

\(a+b+c+\sqrt{abc}=4\Rightarrow4a+4b+4c+4\sqrt{abc}\)

\(\Rightarrow4a+4\sqrt{abc}=16-4b-4c\Leftrightarrow4a+4\sqrt{abc}+bc=16-4b-4c+bc\)

\(\Rightarrow\left(2\sqrt{a}+\sqrt{bc}\right)^2=\left(4-b\right)\left(4-c\right)\Rightarrow a\left(4-b\right)\left(4-c\right)=a\left(2\sqrt{a}+\sqrt{bc}\right)^2\)

\(\Rightarrow\sqrt{a\left(4-b\right)\left(4-c\right)}=\sqrt{a}\left(2\sqrt{a}+\sqrt{bc}\right)=2a+\sqrt{abc}\)

Tương tự như thế thay vào, thì A = 8