K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2021

\(a,A=\dfrac{9x}{x}:\left[\dfrac{x\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)^2}-\dfrac{4\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\right]\\ A=9:\left(\dfrac{x}{\sqrt{x}-2}-\dfrac{4}{\sqrt{x}-2}\right)=9:\dfrac{x-4}{\sqrt{x}-2}\\ A=\dfrac{9\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{9}{\sqrt{x}+2}\\ b,x=11+2\sqrt{30}\Leftrightarrow\sqrt{x}=\sqrt{6}+\sqrt{5}\\ \Leftrightarrow A=\dfrac{9}{\sqrt{6}+\sqrt{5}+2}=\dfrac{9\left(\sqrt{6}+\sqrt{5}-2\right)}{7+2\sqrt{30}}\\ \Leftrightarrow A=\dfrac{9\left(\sqrt{6}+\sqrt{5}-2\right)\left(2\sqrt{30}-7\right)}{71}\)

\(c,A+\sqrt{x}=\dfrac{9}{\sqrt{x}+2}+\sqrt{x}=\dfrac{9}{\sqrt{x}+2}+\left(\sqrt{x}+2\right)-2\\ A+\sqrt{x}\ge2\sqrt{\dfrac{9\left(\sqrt{x}+2\right)}{\sqrt{x}+2}}-2=2\sqrt{9}-2=4\left(đpcm\right)\)

27 tháng 10 2021

c: Xét tứ giác AMHN có 

\(\widehat{AMH}=\widehat{ANH}=\widehat{NAM}=90^0\)

Do đó: AMHN là hình chữ nhật

Suy ra: AH=MN

29 tháng 10 2021

giải kĩ hộ e câu b ak đừng lm ngắn gọn quá

31 tháng 10 2021

b: Xét ΔAHC vuông tại H có

\(AH^2+HC^2=AC^2\)

nên \(AC^2-HC^2=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao

nên \(AH^2=AN\cdot AC\left(2\right)\)

Từ (1) và (2) suy ra \(AN\cdot AC=AC^2-HC^2\)