Cho tam giác ABC vuông tại A có \(\widehat{B}=\widehat{2C}\), AB= 3 cm. Vẽ đường cao AH (H thuộc BC).
a) Chứng minh tam giác HBA đồng dạng với tam giác ABC
b) Kẻ tia phân giác của góc ABC cắt AH tại D và AC tại E. Chứng minh: AB\(^2\) = AE. AC
c) Chứng minh: Tam giác BHD đồng dạng với tam giác BAE rồi suy ra tỉ số diện tích hai tam giác BHD và BAE
a) Xét ΔHBA và ΔABC có
\(\widehat{ABH}\) chung
\(\widehat{AHB}=\widehat{CAB}\left(=90^0\right)\)
Do đó: ΔHBA∼ΔABC(g-g)
b) Xét ΔBAE và ΔCAB có
\(\widehat{BAE}=\widehat{CAB}\left(=90^0\right)\)
\(\widehat{ABE}=\widehat{ACB}\left(=30^0\right)\)
Do đó: ΔBAE∼ΔCAB(g-g)
⇒\(\frac{AB}{CA}=\frac{AE}{AB}\)
hay \(AB^2=AE\cdot AC\)(đpcm)
c) Xét ΔBHD và ΔBAE có
\(\widehat{BHD}=\widehat{BAE}\left(=90^0\right)\)
\(\widehat{HBD}=\widehat{ABE}\)(BE là phân giác của \(\widehat{ABH}\))
Do đó: ΔBHD∼ΔBAE(g-g)
⇒\(\frac{S_{BHD}}{S_{BAE}}=\left(\frac{BH}{BA}\right)^2\)
hay \(\frac{S_{BHD}}{S_{BAE}}=\left(\frac{BH}{3}\right)^2\)(*)
Ta có: ΔHBA∼ΔABC(cmt)
⇒\(\frac{HB}{AB}=\frac{BA}{BC}\)(1)
Ta có: ΔABC vuông tại A(gt)
mà \(\widehat{C}=30^0\)
nên BC=2AB(Trong tam giác vuông, cạnh huyền bằng 2 lần độ dài cạnh đối diện với góc 300)
hay BC=6cm(2)
Từ (1) và (2) suy ra \(\frac{HB}{3}=\frac{3}{6}\)
\(\Leftrightarrow HB=\frac{3\cdot3}{6}=\frac{9}{6}=1,5cm\)(**)
Từ (*) và (**) suy ra \(\frac{S_{BHD}}{S_{BAE}}=\left(\frac{1,5}{3}\right)^2=\frac{1}{4}\)