K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2020

Bài làm:

Dạ thưa đề B bạn viết sai rồi ạ!

Ta có: \(B=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

\(B=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

\(B=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(B=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(\frac{1}{2}+\frac{1}{2}+\frac{1}{4}+\frac{1}{4}+...+\frac{1}{100}+\frac{1}{100}\right)\)

\(B=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(\frac{2}{2}+\frac{2}{4}+\frac{2}{6}+...+\frac{2}{100}\right)\)

\(B=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)

\(B=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}=A\)

\(A\div B=1\)

=> đpcm

Học tốt!!!!

21 tháng 6 2020

ok tks bạn Đăng nhé <33

15 tháng 4 2021

=> A < B

chắc vại-.-

tui hok giỏi toán lém

15 tháng 4 2021

con bái mẹ 

13 tháng 2 2016

B=1/1.2+1/3.4+1/5.6+...+1/99.100

=1-1/2+1/3-1/4+1/5-1/6+...+1/99-1/100

=(1+1/3+1/5+...+1/99)-(1/2+1/4+1/6+...+1/100)

=(1+1/2+1/3+1/4+1/5+1/6+...+1/99+1/100)-2(1/2+1/4+1/6+...+1/100)

=(1+1/2+1/3+1/4+...+1/100)-(1+1/2+1/3+..+1/50)

=1/51+1/52+1/53+..+1/100 (1)

A=1/51+1/52+1/53+..+1/100 (2)

(1),(2)=> A/B=1

 

13 tháng 2 2016

\(\frac{A}{B}=1\)

21 tháng 7 2022

45854

 

212122512122

1

1

1

1123

4564

454

3546434

 

7 tháng 3 2019

\(C=\frac{1}{1.2}+\frac{1}{3.4}+.....+\frac{1}{99.100}=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{99}-\frac{1}{100}=\left(1+\frac{1}{3}+....+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{100}\right)=\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{100}\right)=\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{99}+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}....+\frac{1}{50}\right)=\frac{1}{51}+\frac{1}{52}+....+\frac{1}{100}\Rightarrow C:D=1\)