Cho tam giác ABC vuông tại A với AB = 3cm, BC = 5cm.a) Tính độ dài đoạn thẳng AC.b) Trên tia đối của tia AB, lấy điểm D sao cho AB = AD.Chứng minh ΔABC = ΔADC, từ đó suy ra ΔBCD cân.c) Trên AC lấy điểm E sao choAE=1/3AC Chứng minh DE đi qua trung điểm Icủa BC.d) Chứng minh DI+3/2DC=DB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=5^2-3^2=16\)
hay AC=4(cm)
Vậy: AC=4cm
b)Xét ΔADC vuông tại A và ΔABC vuông tại A có
CA chung
AD=AB(gt)
Do đó: ΔADC=ΔABC(hai cạnh góc vuông)
c) Xét ΔEMD và ΔBMC có
\(\widehat{EDM}=\widehat{BCM}\)(hai góc so le trong, ED//BC)
MD=MC(M là trung điểm của CD)
\(\widehat{EMD}=\widehat{BMC}\)(hai góc đối đỉnh)
Do đó: ΔEMD=ΔBMC(g-c-g)
Suy ra: ED=BC(hai cạnh tương ứng)
mà BC=CD(ΔCDA=ΔCBA)
nên ED=CD
hay ΔCDE cân tại D
b)\(Xét\Delta ABCvà\Delta ADC\),ta có:
AB=AD(giả thiết)
\(\widehat{BAC}=\widehat{DAC}\)=90o(vì \(\Delta\)ABC vuông tại A)
AC:chung
=>\(\Delta ABC=\Delta ADC\left(c.g.c\right)\)
=>BC=DC(hai cạnh tương ứng)
=>\(\Delta BCD\)cân tại C(đpcm)
hình bạn tự vẽ nha
a)xét tam giác ABC vuông tại A,có
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2\)
\(\Leftrightarrow AC^2=5^2-3^2\)
=>AC^2=16
=>AC=4 cm
b)xét tam giác ABC và tam giác ADC có
góc BAC=góc DAC(= 90 độ)
AB=AC(giả thiết)
cạnh AC chung
=>tam giác ABC = tam giác ADC(c.g.c)
=>BC=DC(2 cạnh tương ứng)
=>tam giác BCD cân tại C
mình chỉ làm được đến đay thôi,thực ra mình học rùi nhưng không nhớ nên mong bạn thông cảm nha
a)Xét tam giác ABC vuông tại A có:
\(BC^2=AB^2+AC^2\) (ĐL Pytago)
\(5^2=3^2+AC^2\)
25=9+\(AC^2\)
25-9=\(AC^2\)
\(AC^2\)=16
Vậy...
b)góc BAC=góc DAC(2 góc này ở vị trì kề bù)
Xét tam giác BAC và tam giác DAC có:
BC=AD(gt)
góc BAC=góc DAC(cmt =90độ )
AC cạnh chung
\(\Rightarrow\Delta ABC=\Delta ADC\)(2 cgv)
\(\Rightarrow BC=DC\)(..)(1)
và góc B= góc D(...)(2)
Từ (1) và(2)có tam giác BCD cân tại C
a: \(AC=\sqrt{BC^2-AB^2}=4\left(cm\right)\)
b:Xét ΔACB vuông tại A và ΔACD vuông tại A có
AC chung
AB=AD
Do đó: ΔACB=ΔACD
c: Xét ΔEDB có
EA là đường trung tuyến
EA là đường cao
Do đó:ΔEDB cân tại E
mà EA là đường cao
nên EA là tia phân giác của góc BED
d: Xét ΔCBD có
CA là đường cao
CA là đường trung tuyến
Do đó:ΔCBD can tại C
a: AB<AC<BC
=>góc C<góc B<góc A
b: Xet ΔABC vuông tại A và ΔADC vuông tại A có
AB=AD
AC chung
=>ΔABC=ΔADC
=>CB=CD
=>ΔCBD cân tại C
c: Xet ΔCBD có
CA,BE là trung tuyến
CA căt EB tại I
=>I là trọng tâm
=>DI đi qua trung điểm của BC
a: AC=8-5=3(cm)
b: Vì AC và AD là hai tia đối nhau
nên điểm A nằm giữa hai điểm C và D
mà AC=AD
nên A là trung điểm của CD
ac=4 b)
ac là cạnh chung
ab=ad
dac=bac
biết tới đây thui :(( sorry