chung to rang
a) A= \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}< 1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1/2 + 1/22 + 1/23 + 1/24 + ... + 1/2100
2A = 1 + 1/2 + 1/22 + 1/23 + ... + 1/299
2A - A = (1 + 1/2 + 1/22 + 1/23 + ... + 1/299) - (1/2 + 1/22 + 1/23 + 1/24 + ... + 1/2100)
A = 1 - 1/2100 < 1
Do 1 > 1/2100 => A > 0
=> 0 < A < 1
=> đpcm
mình chỉ gợi ý thôi, vì viết cái này mỏi tay lắm thông cảm nha
Ở phần ''a'' bạn hãy đổi ra thành:2=2;4=2;.....sau dó bạn CM \(\frac{1}{2^2}<\frac{1}{1.2}.....\) rồi hãy suy ra nhỏ hơn \(\frac{1}{3}\)
còn phần ''b'' bạn hãy tách ra nha
dễ mà mình làm hoài hà bạn nhân A cho \(\frac{1}{3}\)rồi sau đó cộng A và \(\frac{1}{3}\times A\) lại tiếp theo tự tính
đặt A=1/2^2+1/3^2+1/4^2+...+1/100^2
B=1/2.3+1/3.4+...+1/99.100
=1/1.2+1/2.3+1/3.4+...+1/99.100
=1-1/2+1/2-1/3+...+1/99-1/100
=1-1/100<1 (1)
Mà 1<2(2)
A =1/1+1/2.2+1/3.3+...+1/100.100<1-1/2+1/2-1/3+...+1/99-1/100 (3)
từ (1),(2),(3) =>A<2
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}<1-\frac{1}{100}<1\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}<1\)
C=1/2*2+1/4*4+1/6*6+...+1/100*100.
C<1/4+1/2*4+1/4*6+1/6*8+...+1/98*100.
C<1/4+1/2*(2/2*4+2/4*6+2/6*8+...+2/98*100).
C<1/4+1/2*(1/2-1/4+1/4-1/6+1/6-1/8+...+1/98-1/100).
C<1/4+1/2*(1/2-1/100).
C<1/4+1/2*49/100.
C<1/4+49/200.
C<1/4+50/200=1/2.
Vậy C<1/2.
ta có \(\frac{1}{2\cdot2}+\frac{1}{4\cdot4}+\frac{1}{6\cdot6}+.........+\frac{1}{100\cdot100}\)
\(< \frac{1}{4}+\frac{1}{2x4}+\frac{1}{4\cdot6}+\frac{1}{6\cdot8}+........+\frac{1}{98\cdot100}\)
\(\frac{1}{4}+\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+......+\frac{1}{98\cdot100}\right)\)
=\(\frac{1}{4}+\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{100}\right)=\frac{1}{4}+\frac{1}{2}\cdot\frac{49}{100}=\frac{1}{4}+\frac{49}{200}\)
tự làm nốt
Ta có : A= 1/2^2 +1/3^2 +....+1/2012^2 +1/2013^2
=> A= 1/2.2 +1/3.3 +....+1/2012.2012 +1/2013.2013
Do :1/2.2< 1/1.2
1/3.3 <1/2.3
.................
1/2012.2012 <1/2011.2012
1/2013.2013< 1/2012.2013
=>1/2.2 +1/3.3 +...+1/2012.2012+1/2013.2013< 1/1.2 +1/2.3+...+1/2011.2012+1/2012.2013
=>A<1/1 -1/2 +1/2 -1/3+...+1/2011-1/2012+1/2012-1/2013
=>A<1/1-1/2013
=>A<2013/2013 -1/2013
=> A< 2012/2013
Vì 2012<2013=>2012/2013<1
mà A<2012/2013=>A<1
Vậy A<1
Ta có : \(\frac{1}{2^2}<\frac{1}{1\cdot2}\)
\(\frac{1}{3^2}<\frac{1}{2\cdot3}\)
...
\(\frac{1}{100^2}<\frac{1}{99\cdot100}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+.......+\frac{1}{100^2}<\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+.......+\frac{1}{99\cdot100}\)
Ta có : \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+.......+\frac{1}{99\cdot100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.......+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}<1\)
\(\Rightarrow\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+.......+\frac{1}{99\cdot100}<1\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+.......+\frac{1}{100^2}<1\Rightarrow1+\frac{1}{2^2}+\frac{1}{3^2}+.......+\frac{1}{100^2}<2\)
Ta có
1 + 1/2^2 + 1/3^2+.....+1/100^2 = 1,634939
=)) 1,634939 < 2
Ta có A = 1/2 + 1/2^2 + 1/2^3 + ... + 1/2^100
Suy ra 2A - A = ( 1 + 1/2 + 1/2^2 +...+ 1/2^99) - ( 1/2 + 1/2^2 +...+ 1/2^100 )
Suy ra A = 1 - 1/2^100 < 1
Vậy A < 1 ( ĐPCM)