Tìm x biết 1/1 +1/3 + 1/6 + ... + 2/x.(x+1) = 1\(\frac{2008}{2010}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{1}+\frac{1}{3}+\frac{1}{6}+...+\frac{2}{x.\left(x+1\right)}=\frac{2}{2}+\frac{2}{6}+\frac{2}{12}+...+\frac{2}{x.\left(x+1\right)}\)
\(=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{x\left(x+1\right)}=2\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{x\left(x+1\right)}\right)\)
\(=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}\right)=2.\left(1-\frac{1}{x+1}\right)\)
\(=2-\frac{2}{x+1}\) mà \(\frac{1}{1}+\frac{1}{3}+\frac{1}{6}+...+\frac{2}{x\left(x+1\right)}=1\frac{2008}{2010}\)
=> \(2-\frac{2}{x+1}=1\frac{2008}{2010}=>\frac{2}{x+1}=\frac{2}{2010}=>x+1=2010=>x=2009\)
đúng cái nhé
`Answer:`
`1/3+1/6+1/10+...+2/(x.(x+1))=2008/2010`
`=2/6+2/12+2/20+...+2/(x.(x+1))=2008/2010`
`=2/(2.3)+2/(3.4)+2/(4.5)+...+(2)/(x.(x+1))=2008/2010`
`=2.(1/2-1/3+1/3-1/4+...+1/x(x+1))=2008/2010`
`=1/2-1/3+1/3-1/4+...+1/x-1/(x+1)=1004/2010`
`=1/2-1/(x+1)=1004/2010`
`=>1/(x+1)=1/2-1004/2010`
`=>1/(x+1)=1/2010`
`=>x+1=2010`
`=>x=2010-1`
`=>x=2009`
\(|x-\frac{1}{3}|=|\left(-3.2\right)+\frac{2}{5}|\)
\(\Rightarrow|x-\frac{1}{3}|=|-3.2+0.4|\)
\(\Rightarrow|x-\frac{1}{3}|=|-2.8|\)
\(\Rightarrow|x-\frac{1}{3}|=2.8\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{1}{3}=2.8\\x-\frac{1}{3}=-2.8\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=\frac{43}{15}\\x=-\frac{41}{15}\end{cases}}\)
tính lại kết quả nhé
\(3.\)
\(\frac{x-1}{2011}+\frac{x-2}{2010}+\frac{x-3}{2009}=\frac{x-4}{2008}\)
\(\Rightarrow\)\(\frac{x-1}{2011}-1+\frac{x-2}{2010}-1+\frac{x-3}{2009}-1-\frac{x-4}{2008}+1+2=0\)
\(\Rightarrow\)\(\frac{x-1}{2011}-\frac{2011}{2011}+\frac{x-2}{2010}-\frac{2010}{2010}+\frac{x-3}{2009}-\frac{2009}{2009}-\frac{x-4}{2008}+\frac{2008}{2008}=0\)
\(\Rightarrow\)\(\frac{x-2012}{2011}+\frac{x-2012}{2010}+\frac{x-2012}{2009}-\frac{x-2012}{2008}=0\)
\(\Rightarrow\)\(x-2012\left(\frac{1}{2011}+\frac{1}{2010}+\frac{1}{2009}+\frac{1}{2008}\right)=0\)
\(\Rightarrow\)\(x=2012\)
\(1+\frac{1}{3}+\frac{1}{6}+...+\frac{2}{x.\left(x+1\right)}=1\frac{2008}{2010}\)
\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{x\left(x+1\right)}=1\frac{2008}{2010}\)
\(\Rightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=1\frac{2008}{2010}\):2
\(\Rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2009}{2010}\)
\(\Rightarrow1-\frac{1}{x+1}=\frac{2009}{2010}\)
\(\Rightarrow1-\frac{2009}{2010}=\frac{1}{x+1}\)
\(\Rightarrow\frac{1}{2010}=\frac{1}{x+1}\)
\(\Rightarrow x=2009\)
nha !
Ta có :A=1+\(\frac{2}{6}\)+\(\frac{2}{12}\)+......+\(\frac{2}{x\left(x+1\right)}\)=\(\frac{4018}{2010}\)
\(\Rightarrow\)A=\(\frac{2}{2.3}\)+\(\frac{2}{3.4}\)+...+\(\frac{2}{x\left(x+1\right)}\)=\(\frac{2008}{2010}\)
\(\Rightarrow\)A=2(\(\frac{1}{2.3}\)+\(\frac{1}{3.4}\)+...+\(\frac{1}{x\left(x+1\right)}\))=\(\frac{2008}{2010}\)
\(\Rightarrow\)A=2(\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{4}\)+...+\(\frac{1}{x}\)-\(\frac{1}{x+1}\))=\(\frac{2008}{2010}\)
\(\Rightarrow\)A=2(\(\frac{1}{2}\)-\(\frac{1}{x+1}\))=\(\frac{2008}{2010}\)
\(\Rightarrow\)A=\(\frac{1}{2}\)-\(\frac{1}{x+1}\)=\(\frac{502}{1005}\)
\(\Rightarrow\)\(\frac{1}{x+1}\)=\(\frac{1}{2010}\)\(\Rightarrow\)x+1=2010\(\Rightarrow\)x=2009