Cho đường tròn (C) có Pt: \(x^2+y^2-2x+4y-20=0\) và đường thẳng d: 4x-3y+5=0
a) Xác định tọa độ tâm và tính bán kính của (C)
b) Viết PT tiếp tuyến của (C) biết tiếp tuyến đó // với đường thẳng d
c) Viết PT đường thẳng d' sao cho d' song song với d và cắt đường tròn (C) tại hai điểm A, B sao cho AB=6
a) Gọi tâm của đường tròn I cần tìm là I(a;b), bán kính R nên ta có:
\(\left\{{}\begin{matrix}-2ax+-2x\\-2by=4y\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)
=> I(1;2)
Bán kính đường tròn là:\(R=\sqrt{1^2+2^2+20^2}=9\sqrt{5}\)