Tìm x,y,z biết 35x+10y+100z=1000 và x+y+z=20
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 35x=14y=10z
=> \(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{7}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có :
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{\left(x+z-y\right)}{2+5-7}=\dfrac{20}{0}=0\)
Có : x/2 = 0 => x = 2*0 = 0
y/5 = 0 => y = 5*0 = 0
z/7 = 0 => z=7*0=0
Vậy, ..
8) 35x=21y=15z và x+y-z=9
\(\frac{35x}{105}\)=\(\frac{21y}{105}\)=\(\frac{15z}{105}\)=>\(\frac{x}{3}\)=\(\frac{y}{5}\)=\(\frac{z}{7}\)và x+y-z=9
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}\)=\(\frac{y}{5}\)=\(\frac{z}{7}\)=\(\frac{x+y-z}{3+5-7}\)=\(\frac{9}{1}\)=9
Do đó
\(\frac{x}{3}\)=9=> x=3.9=27
\(\frac{y}{5}\)=9 => y=5.9=45
\(\frac{z}{7}\)=9 =>z=7.9=63
Vậy x=27; y=45; z=63
8. =>\(\frac{x}{35}=\frac{y}{21}=\frac{z}{15}=>\frac{x+y-z}{35+21-15}=\frac{9}{41}\)
=>\(\frac{x}{35}=\frac{9}{41}=>x=\frac{315}{41}\)
=>\(\frac{y}{21}=\frac{9}{41}=>y=\frac{189}{41}\)
=>\(\frac{z}{15}=\frac{9}{41}=>z=\frac{135}{41}\)
vậy :\(x=\frac{315}{41};y=\frac{189}{41};z=\frac{135}{41}\)
9. =>\(\frac{x}{10}=\frac{y}{6}=\frac{z}{5}=>\frac{x+y-z}{10+6-5}=\frac{24}{11}\)
=>\(\frac{x}{10}=\frac{24}{11}=>x=\frac{240}{11}\)
=>\(\frac{y}{6}=\frac{24}{11}=>y=\frac{144}{11}\)
=>\(\frac{z}{5}=\frac{24}{11}=>z=\frac{120}{11}\)
vậy :\(x=\frac{240}{11};y=\frac{144}{11};z=\frac{120}{11}\)
Ta có: \(10x=6y=5z\Leftrightarrow\frac{x}{\frac{1}{10}}=\frac{y}{\frac{1}{6}}=\frac{z}{\frac{1}{5}}\) và \(x+y-z=24\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{\frac{1}{10}}=\frac{y}{\frac{1}{6}}=\frac{z}{\frac{1}{5}}=\frac{x+y-z}{\frac{1}{10}+\frac{1}{6}-\frac{1}{5}}=24:\frac{1}{15}=360\)
=> x = 360 : 10 = 36
y = 360 : 6 = 60
z = 360 : 5 = 72
1) \(35x=21y\Rightarrow\frac{21}{35}=\frac{x}{y}=\frac{3}{5}=>\frac{x}{3}=\frac{y}{5}\) (1)
\(21y=15z\Rightarrow\frac{15}{21}=\frac{y}{z}=\frac{5}{7}\Rightarrow\frac{y}{5}=\frac{z}{7}\)(2)
Từ (1) và (2) => \(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}=\frac{x+y-z}{3+5-7}=\frac{27}{1}=27\)
=> \(\frac{x}{3}=27\Rightarrow x=27.3=81\)
\(\frac{y}{5}=27\Rightarrow y=27.5=135\)
\(\frac{z}{7}=27\Rightarrow z=27.7=189\)
2) \(10x=6y\Rightarrow\frac{6}{10}=\frac{x}{y}=\frac{3}{5}\Rightarrow\frac{x}{3}=\frac{y}{5}\) (1)
\(6y=5z\Rightarrow\frac{5}{6}=\frac{y}{z}\Rightarrow\frac{y}{5}=\frac{z}{6}\)(2)
Từ (1) và (2) => \(\frac{x}{3}=\frac{y}{5}=\frac{z}{6}\)
(còn phần dưới thì tự tính ra x, y, z đc rồi đó ^^)
1)
\(3x=2y=z\)
\(\Rightarrow\frac{3x}{6}=\frac{2y}{6}=\frac{z}{6}\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{6}\)
Áp dụng tc của dãy tỉ số bằng nhau Ta có
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{6}=\frac{x+y+z}{2+3+6}=\frac{99}{11}=9\)
\(\Rightarrow\begin{cases}x=18\\y=26\\z=54\end{cases}\)
2)
\(6x=10y=14z\)
\(\Rightarrow\frac{6x}{210}=\frac{10y}{210}=\frac{14z}{210}\)
\(\Rightarrow\frac{x}{35}=\frac{y}{21}=\frac{z}{15}\)
Áp dụng tc của dãy tỉ số bằng nhau Ta có
\(\frac{x}{35}=\frac{y}{21}=\frac{z}{15}=\frac{x+y+z}{35+21+15}=\frac{46}{71}\)
\(\Rightarrow\begin{cases}x=\frac{1610}{71}\\y=\frac{966}{71}\\z=\frac{690}{71}\end{cases}\)
35x = 21y => 5x = 3y
21y = 15z => 7y = 5z
x.y.z = 576
=> 5x.y.5z = 14400
=> 3y.y.7y = 14400
=> 21y^3 = 14400
=> y^3 = 4800/7
Đến đây tự bấm máy tính mà tìm, Số dài lắm
b) Ta có: 7x=10y=12z
nên \(\dfrac{x}{\dfrac{1}{7}}=\dfrac{y}{\dfrac{1}{10}}=\dfrac{z}{\dfrac{1}{12}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{1}{7}}=\dfrac{y}{\dfrac{1}{10}}=\dfrac{z}{\dfrac{1}{12}}=\dfrac{x+y+z}{\dfrac{1}{7}+\dfrac{1}{10}+\dfrac{1}{12}}=\dfrac{685}{\dfrac{137}{420}}=2100\)
Do đó:
\(\left\{{}\begin{matrix}x=2100\cdot\dfrac{1}{2}=1050\\y=2100\cdot\dfrac{1}{10}=210\\z=2100\cdot\dfrac{1}{12}=175\end{matrix}\right.\)
a)6x=10y=>x/10=y/6=>x/50=y/30
10y=15z=>y/15=z/10=>y/30=z/20
x+y+z/50+30+10=90/90=1
x=50;y=30;z=10
b)đề 2 có sai ko z pn