K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAHD vuông tại H và ΔAED vuông tại E có

AD chung

AH=AE
=>ΔAHD=ΔAED

b: DH=DE
DE<DC

=>DH<DC

c: Xét ΔAKC có

CH,KE là đường cao

CH căt KE tại D

=>D là trực tâm

=>AD vuông góc KC

Xet ΔABC vuông tại A và ΔADE vuông tại A có

AB=AD

AC=AE
=>ΔABC=ΔADE

=>BC=DE

4 tháng 5 2022

db

 

 

a: Xét ΔAHD vuông tại H và ΔAKD vuông tại K có

AH=AK

AD chung

=>ΔAHD=ΔAKD

b: AK=AH

DH=DK

=>AD là trung trực của HK

19 tháng 7 2019

Xét \(\Delta BAD\)(\(\widehat{A}=90^o\))và \(\Delta BHD\)(\(\widehat{H}=90^o\))có:

\(\widehat{ABD=\widehat{HBD}}\)(gt)

BD: cạnh chung

=> \(\Delta ABD=\Delta HBD\left(CH-GN\right)\)

=> AB=BH; AD=DC (2 cạnh t/ứng)

và \(\widehat{BDA=\widehat{BDC}}\)(2 góc t/ứng)

Xét \(\Delta ABH\)cân tại B(vì AB=BH[cmt]) có : BD là đường p.g

=> B là điểm thuộc đường trung trực AH (1)

Xét \(\Delta ADH\)cân tại D(vì AD=DH(cmt)) có: DB là đường p.g ( vì \(\widehat{BDA=\widehat{BDC}}\))

=> D là điểm thuộc đường trung trực AH (2)

Từ (1) và (2)=> BD là trung trực của đt AH

19 tháng 7 2019

B F A E K D C H I

+ Xét \(\Delta ABD\)vuông tại A và \(\Delta HBD\)vuông tại H ( vì \(DH\perp BC\))

Có : BD là cạnh chung

        \(\widehat{ABD}=\widehat{HBD}\)( Vì BD là p/g của góc B)      => \(\Delta ABD=\Delta HBD\)( canh huyền-góc nhọn)

                                                                                       => AB = HB

+ Gọi I là giao điểm của BD và AH

CM đc : \(\Delta ABI=\Delta HBI\)(c-g-c)

=> IA = IH ( 2 cạnh tương ứng)    (1)

và \(\widehat{BIA}=\widehat{BIH}\)( 2 góc t.ư)

Vì \(\widehat{BIA}=\widehat{BIH};\widehat{BIA}+\widehat{BIH}=180^o\)( 2 góc k.bù)

=> \(\widehat{BIA}=\widehat{BIH}=\frac{180^o}{2}=90^o\Rightarrow BD\perp AH\)tại I (2)

Từ (1),(2) => BD là trung trực của đth AH

`a,`

Xét `2 \Delta` vuông `AHD` và ` AED`:

\(\text{AD chung}\)

\(\text{AH = AE (gt)}\)

`=> \Delta AHD = \Delta AED (ch-cgv)`

`b,`

Vì `\Delta AHD = \Delta AED (a)`

`->`\(\text{DH = DE (2 cạnh tương ứng) (1)}\)

\(\text{Xét }\Delta\text{DEC :}\)

\(\widehat{\text{DEC}}=90^0\)

`@` Theo định lý quan hệ giữa góc và cạnh đối diện

`->`\(\text{DC là cạnh lớn nhất}\)

`->`\(\text{DC > DE (2)}\)

Từ \(\left(1\right)\) và \(\left(2\right)\)

`->`\(\text{DC > DH.}\)

`c,` cho mình bỏ câu này;-;;; xin lỗi cậu nhiều;-;.

loading...