K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABM và ΔACN có 
AB=AC

\(\widehat{BAM}\) chung

AM=AN

Do đó: ΔABM=ΔACN

Suy ra: BM=CN

b: Xét ΔNBC và ΔMCB có 

NB=MC

NC=MB

BC chung

Do đó: ΔNBC=ΔMCB

Suy ra: \(\widehat{GNB}=\widehat{GMC}\)

Xét ΔGNB và ΔGMC có 

\(\widehat{GNB}=\widehat{GMC}\)

NB=MC

\(\widehat{GBN}=\widehat{GCM}\)

Do đó: ΔGNB=ΔGMC

26 tháng 1 2022

TK

undefined

a: Ta có: ΔABC cân tại A

mà AD là đường trung tuyến

nên AD là đường cao

b: Xét ΔABM vuông tại M và ΔACN vuông tại N có 

\(\widehat{BAM}\) chung

Do đó: ΔABM=ΔACN

Suy ra: AM=AN

Xét ΔBAC có AN/AB=AM/AC

nên MN//BC

a: XétΔAMB vuông tại M và ΔANC vuông tại N có

góc A chung

Do đó: ΔAMB\(\sim\)ΔANC

b: Ta có: ΔANH vuông tại N

mà NI là đường trung tuyến

nên NI=AH/2(1)

Ta có: ΔAMH vuông tại M

mà MI là đường trung tuyến

nên MI=AH/2(2)

Từ (1) và (2) suy ra NI=MI(3)

Ta có: ΔNBC vuông tại N

mà NK là đường trung tuyến

nên NK=BC/2(4)

Ta có: ΔMBC vuông tại M

mà MK là đường trung tuyến

nên MK=BC/2(5)

Từ (4), (5) suy ra NK=MK(6)

Từ (3) và (6) suy ra IK là đường trung trực của MN

16 tháng 1 2021

a) Xét tam giác ABM và  tam giác ACN:

Góc A chung

AB = AC (do tam giác ABC cân tại A)

AM = AN (gt)

Suy ra: tam giác ABM = tam giác ACN (c g c)

16 tháng 1 2021

b) Xét tam giác AMN có :

AM =AN (gt)

Suy ra:  tam giác AMN cân tại A

Suy ra góc ANM = \(\dfrac{\text{180 - góc A}}{2}\)

mà góc ABC = \(\dfrac{\text{180 - góc A}}{2}\)  ( do tam giác ABC cân tại A)

Suy ra: góc ANM = góc ABC

Mà 2 góc này ở vị trí đồng vị của MN và BC

Suy ra MN song song BC

10 tháng 7 2019

A B C D H E F M N

CM: a) Xét t/giác ABM và t/giác ACN

có: AB = AC (gt)

 \(\widehat{B}=\widehat{C}\) (vì t/giác ABC cân)

  BM = CN (gt)

=> t/giác ABM = t/giác ACN (c.g.c)

b) Ta có: BM + MD = BD

   CN + ND = CD

Mà BM = CN (gt); MD = ND (gt)

=> BD = CD

Xét t/giác ABD và t/giác ACD

có: AB = AC (gt)

  \(\widehat{B}=\widehat{C}\) (vì t/giác ABC cân)

 BD = CD (cmt)

=> t/giác ABD = t/giác ACD (c.g.c)

=> \(\widehat{BAD}=\widehat{CAD}\) (2 góc t/ứng)

=> AD là tia p/giác của \(\widehat{BAC}\)

c) Xét t/giác MEB = t/giác NFC

có: \(\widehat{BEM}=\widehat{CFN}=90^0\) (gt)

  BM = CN (gt)

    \(\widehat{B}=\widehat{C}\) (vì t/giác ABC cân)

=> t/giác MEB = t/giác NFC (ch - gn)

d) Ta có: AB = AE + EB

 AC = AF + FA

mà AB = AC (gt); EB = FC (vì t/giác MEB = t/giác NFC)

=> AE = AF 

=> t/giác AEF cân tại A

=> \(\widehat{AEF}=\widehat{AFE}=\frac{180^0-\widehat{A}}{2}\) (1)

T/giác ABC cân tại A
=> \(\widehat{B}=\widehat{C}=\frac{180^0-\widehat{A}}{2}\) (2)

Từ (1) và (2) => \(\widehat{AEF}=\widehat{B}\)

Mà 2 góc này ở vị trí đồng vị

=> EF // BC

e) Xét t/giác AEH và t/giác AFH

có: AE = AF (cmt)

 \(\widehat{AEH}=\widehat{AFH}=90^0\) (gt)

 AH : chung

=> t/giác AEH = t/giác AFH (ch - cgv)

=> \(\widehat{EAH}=\widehat{FAH}\) (2 góc t/ứng)

=> AH là tia p/giác của \(\widehat{A}\)

Mà AD cũng là tia p/giác của \(\widehat{A}\)

=> AH \(\equiv\) AD 

=> A, D, H thẳng hàng

5 tháng 5 2023

M: a) Xét t/giác ABM và t/giác ACN

có: AB = AC (gt)

 �^=�^ (vì t/giác ABC cân)

  BM = CN (gt)

=> t/giác ABM = t/giác ACN (c.g.c)

b) Ta có: BM + MD = BD

   CN + ND = CD

Mà BM = CN (gt); MD = ND (gt)

=> BD = CD

Xét t/giác ABD và t/giác ACD

có: AB = AC (gt)

  �^=�^ (vì t/giác ABC cân)

 BD = CD (cmt)

=> t/giác ABD = t/giác ACD (c.g.c)

=> ���^=���^ (2 góc t/ứng)

=> AD là tia p/giác của ���^

c) Xét t/giác MEB = t/giác NFC

có: ���^=���^=900 (gt)

  BM = CN (gt)

    �^=�^ (vì t/giác ABC cân)

=> t/giác MEB = t/giác NFC (ch - gn)

d) Ta có: AB = AE + EB

 AC = AF + FA

mà AB = AC (gt); EB = FC (vì t/giác MEB = t/giác NFC)

=> AE = AF 

=> t/giác AEF cân tại A

=> ���^=���^=1800−�^2 (1)

T/giác ABC cân tại A
=> �^=�^=1800−�^2 (2)

Từ (1) và (2) => ���^=�^

Mà 2 góc này ở vị trí đồng vị

=> EF // BC

e) Xét t/giác AEH và t/giác AFH

có: AE = AF (cmt)

 ���^=���^=900 (gt)

 AH : chung

=> t/giác AEH = t/giác AFH (ch - cgv)

=> ���^=���^ (2 góc t/ứng)

=> AH là tia p/giác của �^

Mà AD cũng là tia p/giác của �^

=> AH  AD 

=> A, D, H thẳng hàng