Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Đặt f(x)=0
=>3x-6=0
hay x=2
b: Đặt h(x)=0
=>(x-4)(x+4)=0
=>x=4 hoặc x=-4
c: Đặt g(x)=0
=>-5x+30=0
hay x=6
d: Đặt p(x)=0
=>35x-56+21=0
=>35x=35
hay x=1
Bài 7: Tìm nghiệm của các đa thức sau
a) f(x)= 3x - 6
3x - 6 = 0
= 3x = 6
= x = 6 : 3
= x = 2
Vậy 2 là nghiệm của f(x).
b) h(x)= x2 - 16
x2 - 16 = 0
= ( x - 4 ) ( x + 4 ) = 0
= x = 4 hoặc x = -4
Vậy 4 hoặc -4 là nghiệm của h(x).
c) g(x)= -5x + 30
-5x + 30 = 0
= -5x = -30
= x = -30 : -5
= x = 6
Vậy 6 là nghiệm của g(x).
d) p(x)= 7 ( 5x - 8 ) + 21
7 ( 5x - 8 ) + 21 = 0
= 35x - 56 + 21 = 0
= 35x - 35 = 0
= 35x = 35
= x = 35 : 35
= x = 1
Vậy 1 là nghiệm của p(x).
Bài 1:
a: \(\Leftrightarrow x^2-5x+6< =0\)
=>(x-2)(x-3)<=0
=>2<=x<=3
b: \(\Leftrightarrow\left(x-6\right)^2< =0\)
=>x=6
c: \(\Leftrightarrow x^2-2x+1>=0\)
\(\Leftrightarrow\left(x-1\right)^2>=0\)
hay \(x\in R\)
2. a) \(A=7x^2-4x-3\)
\(=7x^2-7x+4x-3\)
\(=\left(7x^2-7x\right)+\left(3x-3\right)\)
\(=7x\left(x-1\right)+3\left(x-1\right)\)
\(=\left(x-1\right)\left(7x+3\right)\)
Cho A = 0 \(\Rightarrow\orbr{\begin{cases}x-1=0\\7x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{-3}{7}\end{cases}}}\)
Vậy .........
b) \(B=5x^2-3x-8\)
\(=5x^2+5x-8x-8\)
\(=\left(5x^2+5x\right)-\left(8x+8\right)\)
\(=5x\left(x+1\right)-8\left(x+1\right)\)
\(=\left(x+1\right)\left(5x-8\right)\)
Cho B = 0 \(\Rightarrow\orbr{\begin{cases}x+1=0\\5x-8=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{8}{5}\end{cases}}}\)
Vậy ..........
\(Câu8\)
\(a,A=\dfrac{1}{2}x^3\times\dfrac{8}{5}x^2=\left(\dfrac{1}{2}\times\dfrac{8}{5}\right)x^{3+2}=\dfrac{4}{5}x^5\)
b, \(P\left(0\right)=0^2-5.0+6=6\\ P\left(2\right)=2^2-5.2+6=0\)
Câu 9
\(a,A\left(x\right)+B\left(x\right)=5x^3+x^2-3x+5+5x^3+x^2+2x-3\\ =\left(5x^3+5x^3\right)+\left(x^2+x^2\right)+\left(-3x+2x\right)+\left(5-3\right)\\ =10x^3+2x^2-x+2\)
\(b,H\left(x\right)=A\left(x\right)-B\left(x\right)=5x^3+x^2-3x+5-\left(5x^3+x^2+2x-3\right)\\ =5x^3+x^2-3x+5-5x^3-x^2-2x+3\\ =\left(5x^3-5x^3\right)+\left(x^2-x^2\right) +\left(-3x-2x\right)+\left(5+3\right)\\ =-5x+8\)
\(H\left(x\right)=0\\ \Rightarrow-5x+8=0\\ \Rightarrow x=\dfrac{8}{5}\)
vậy nghiệm của đa thức là \(x=\dfrac{8}{5}\)
a)\(A\left(x\right)=3x^2-5x+2\)
\(\Rightarrow A\left(x\right)=3x^2-3x-2x+2=3x\left(x-1\right)-2\left(x-1\right)=\left(3x-2\right)\left(x-1\right)\)
A(x) có nghiệm <=> (3x-2)(x-1)=0
<=>3x-2=0 hoặc x-1=0
<=>3x=2 hoặc x=1
<=>x=2/3 hoặc x=1
Vậy..................................
b)\(B\left(x\right)=x^2+3x-4\)
\(\Rightarrow B\left(x\right)=x^2+4x-x-4=x\left(x+4\right)-\left(x+4\right)=\left(x-1\right)\left(x+4\right)\)
B(x) có nghiệm <=> (x-1)(x+4)=0
<=>x-1=0 hoặc x+4=0
<=>x=1 hoặc x=-4
Vậy...............................
\(5x-6-\left(x+2\right)=0\)
\(\Leftrightarrow5x-6-x-2=0\)
\(\Leftrightarrow5x-x=6+2\)
\(\Leftrightarrow4x=8\)
\(\Leftrightarrow x=2\)
Vậy x = 2 là nghiệm của phương trình trên
b)\(3x-6x^2=0\)
\(\Leftrightarrow3x\left(1-2x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x=0\\1-2x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{2}\end{cases}}}\)
Vậy phương trình trên có tập nghiệm là: S = {0;1/2}
#hoktot<3#
a, \(5x-6-\left(x+2\right)=0\)
\(\Leftrightarrow5x-6-x-2=0\)
\(\Leftrightarrow4x-8=0\)
\(\Leftrightarrow4x=8\)
\(\Leftrightarrow x=2\)
Vậy x=2 là nghiệm của đa thức
b, \(3x-6x^2=0\)
\(\Leftrightarrow3x.\left(1-2x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x=0\\1-2x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{2}\end{cases}}\)
Vậy đa thức có 2 nghiệm \(x=\left\{0,\frac{1}{2}\right\}\)