Với a,b,c>0.CMR:
(a+b)(b+c)(c+a) lớn hơn hoặc bằng 3abc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a^3+b^3+c^3-3abc}{a+b+c}=\frac{\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc}{a+b+c}=\frac{\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)}{a+b+c}\)
\(=\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{a+b+c}=a^2+b^2+c^2-ab-bc-ca\)
\(=\frac{1}{2}\left(a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\right)\)
\(=\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\) (đpcm)
•๖ۣۜAƙαĭ ๖ۣۜHαɾυмα•™ [ RBL ] ❧PEWDS☙ chỉ biết đi copy thôi à ?
a) \(a^2+b^2+1\ge ab+a+b\)
\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)
\(\Leftrightarrow a^2-2ab+b^2+a^2-2a+1+b^2-2b+1\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\)( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow a=b=1\)
b) \(a+b+c=0\)
\(\Leftrightarrow a+b=-c\)
\(\Leftrightarrow\left(a+b\right)^3=\left(-c\right)^3\)
\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)
\(\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)
\(\Leftrightarrow a^3+b^3+c^3=-3ab\cdot\left(-c\right)\)
\(\Leftrightarrow a^3+b^3+c^3=3abc\)( đpcm )
ta xét vế trái a^3+b^3+c^3=
[(a+b)(a^2-ab+b^2)]+c^3.(1)
Mà theo giả thuyết a+b+c=0 suy ra c= - (a+b)suy ra
c^3= -(a+b)^3
Thay vào`(1) ta co [(a+b)(a^2-ab+b^2)] - (a+b)^3
(nhân tử chúng ta có)=(a+b)[a^2-ab+b^2-(a+b)^2]
(phan h (a+b)^2) =(a+b)[a^2-ab+b^2-(a^2+2ab+b^2)]
=(a+b)(a^2-ab+b^2-a^2-2ab-b^2)
=(a+b).(-3ab)
= -(a+b).3ab (2)
theo giả thuyết ta có: a+b+c=0 suy ra c= -(a+b)
thay vào (2) ta dc
=3abc
ta kết luận :vế trái= vế phải
chúc bn hc tốt
Ta có: \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)
\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{9}{2\left(a+b+c\right)}\)
\(\Rightarrow\left(a^2+b^2+c^2\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge\frac{3}{2}\left(a+b+c\right)\)
đề sai á? tg ns lăng nhăng lên đây thử xem có ai giải k thôi
\(1=a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
\(\Rightarrow2P=2a^2+2b^2+2c^2=\frac{2}{a+b+c}+2ab+2bc+2ca\)
\(\Rightarrow3P=3a^2+3b^2+3c^2=\frac{2}{a+b+c}+a^2+b^2+c^2+2ab+2bc+2ca\)
\(=\frac{1}{a+b+c}+\frac{1}{a+b+c}+\left(a+b+c\right)^2\ge3\sqrt[3]{\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}}=3\)
\(\Rightarrow P\ge1\)
Đẳng thức xảy ra khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và các hoán vị.
ta áp dụng cô-si la ra
a^2+b^2+c^2 ≥ ab+ac+bc
̣̣(a - b)^2 ≥ 0 => a^2 + b^2 ≥ 2ab (1)
(b - c)^2 ≥ 0 => b^2 + c^2 ≥ 2bc (2)
(a - c)^2 ≥ 0 => a^2 + c^2 ≥ 2ac (3)
cộng (1) (2) (3) theo vế:
2(a^2 + b^2 + c^2) ≥ 2(ab+ac+bc)
=> a^2 + b^2 + c^2 ≥ ab+ac+bc
dấu = khi : a = b = c
Ta có: \(a=b=c\Rightarrow\hept{\begin{cases}a^3=abc\\a^3=b^3=c^3\end{cases}}\)
Vì \(a^3=b^3=c^3\Rightarrow a^3+b^3+c^3=3a^3\)
\(\Rightarrow a^3+b^3+c^3=3abc\left(đpcm\right)\)
\(a+b+c=0\)
\(\Leftrightarrow a+b=-c\)
\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3=-c^3\)
\(\Leftrightarrow a^3+3ab\left(a+b\right)+b^3+c^3=0\)
\(\Leftrightarrow a^3-3abc+b^3+c^3=0\)
\(\Leftrightarrow a^3+b^3+c^3=3abc\)