K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2020

\(f\left(x\right)=x2-7x+6\)

ta có f(x)=0

hay\(x2-7x+6=0\)

\(\Leftrightarrow x2-7x=-6\)

\(\Leftrightarrow x\left(-5\right)=-6\)

\(\Leftrightarrow x=\frac{6}{5}\)

vậy nghiệm của đa thức f(x) là 6/5

10 tháng 6 2020

\(f\left(x\right)=x^2-7x+6\)

\(f\left(x\right)=0\Leftrightarrow x^2-7x+6=0\)

                   \(\Leftrightarrow x^2-x-6x+6=0\)

                   \(\Leftrightarrow x.\left(x-1\right)-6.\left(x-1\right)=0\)

                   \(\Leftrightarrow\left(x-1\right).\left(x-6\right)=0\)

                   \(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-6=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}z=1\\x=6\end{cases}}\)

Vậy phương trình có 2 nghiệm \(x=\left\{1,6\right\}\)

20 tháng 6 2018

Chọn B

Vì f(1) = 0, f(6) = 0 nên nghiệm của đa thức là 1 và 6.

12 tháng 8 2021

Phần nào bạn ko nhìn thấy thì bảo mk nhé

undefinedundefined

12 tháng 8 2021

Ko có phần d nhé

phần e  thêm "=0" vào cuối nhé

11 tháng 4 2023

Phân tích đa thức thành nhân tử thôi bạn :

Ta có :

\(h\left(x\right)=x^2+5x+6\)

\(h\left(x\right)=x\left(x+2\right)+3\left(x+2\right)\)

\(h\left(x\right)=\left(x+2\right)\left(x+3\right)\)

\(\Rightarrow N_oh\left(x\right)=-2;-3\)

\(g\left(x\right)=2x^2+7x-9\)

\(g\left(x\right)=2x^2+9x-2x-9\)

\(g\left(x\right)=2x\left(x-1\right)+9\left(x-1\right)\)

 

\(g\left(x\right)=\left(x-1\right)\left(2x+9\right)\)

\(\Rightarrow N_og\left(x\right)=1;-4,5\)

11 tháng 4 2023

ko biet

 

10 tháng 5 2022

Cho `f(x)=0`

`=>(x^2-2)(3x^4+6)=0`

   Mà `3x^4+6 > 0 AA x`

`=>x^2=2`

`=>x^2=2`

`=>x=+-\sqrt{2}`

Vậy nghiệm của đa thức `f(x)` là `x=\sqrt{2}` hoặc `x=-\sqrt{2}`

10 tháng 5 2022

cho f(X) = 0

\(=>\left(2x-2\right)\left(3x.4+6\right)=0\)

\(=>\left[{}\begin{matrix}2x-2=0\\12x+6=0\end{matrix}\right.=>\left[{}\begin{matrix}2x=2\\12x=-6\end{matrix}\right.=>\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{2}\end{matrix}\right.\)

a: f(x)=3x^4+2x^3+6x^2-x+2

g(x)=-3x^4-2x^3-5x^2+x-6

b: H(x)=f(x)+g(x)

=3x^4+2x^3+6x^2-x+2-3x^4-2x^3-5x^2+x-6

=x^2-4

f(x)-g(x)

=3x^4+2x^3+6x^2-x+2+3x^4+2x^3+5x^2-x+6

=6x^4+4x^3+11x^2-2x+8

c: H(x)=0

=>x^2-4=0

=>x=2 hoặc x=-2

31 tháng 3 2017

a) \(f\left(x\right)=x^2+7x-8=0\)

\(\Leftrightarrow f\left(x\right)=x^2-x+8x-8=0\)

\(\Leftrightarrow f\left(x\right)=\left(x^2-x\right)+\left(8x-8\right)=0\)

\(\Leftrightarrow f\left(x\right)=x\left(x-1\right)+8\left(x-1\right)=0\)

\(\Leftrightarrow f\left(x\right)=\left(x-1\right)\left(x+8\right)=0\)

\(\Rightarrow x-1=0\) hoặc  \(x+8=0\)

Nếu \(x-1=0\Rightarrow x=1\) 

Nếu  \(x+8=0\Rightarrow x=-8\)

Vậy đa thức f(x) có nghiệm là 1 và -8

b) \(k\left(x\right)=5x^2+9x+4=0\)

\(\Leftrightarrow k\left(x\right)=5x^2+5x+4x+4=0\)

\(\Leftrightarrow k\left(x\right)=\left(5x^2+5x\right)+\left(4x+4\right)=0\)

\(\Leftrightarrow k\left(x\right)=5x\left(x+1\right)+4\left(x+1\right)=0\)

\(\Leftrightarrow k\left(x\right)=\left(x+1\right)\left(5x+4\right)=0\)

\(\Rightarrow x+1=0\) hoặc \(5x+4=0\)

Nếu \(x+1=0\Rightarrow x=-1\)

Nếu \(5x+4=0\Rightarrow x=-\frac{4}{5}\)

Vậy đa thức k(x) có nghiệm là -1 và -4/5

1: 

a: f(3)=2*3^2-3*3=18-9=9

b: f(x)=0

=>2x^2-3x=0

=>x=0 hoặc x=3/2

c: f(x)+g(x)

=2x^2-3x+4x^3-7x+6

=6x^3-10x+6