Cho hình bình hành ABCD. Qua A kẻ một đường thẳng bất kì cắt BD, BC, CD lần lượt ở E, K, G. Chứng minh:
a)EA.ED=ED.EF
b)Tam giác DGE đồng dạng với tam giác BEA
c) AE^2 = EK.EG;
d) Khi đường thẳng A thay đổi thì tích BK.DG có giá trị không đổi.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: cắt DC tại G, cắt CB tại F
a: Xét ΔDAE và ΔBFE có
góc DEA=góc BEF
góc EAD=góc EFB
=>ΔDAE đồng dạng vơi ΔBFE
c:
ΔDAE đồng dạng với ΔBFE
=>AE/FE=DE/BE=DA/BF
ΔDEG đồng dạng với ΔBEA
=>AE/EG=BE/DE
=>EG/AE=AE/FE
=>AE^2=EG*EF
a: Xét ΔDAE và ΔBFE có
góc DAE=góc BFE
góc DEA=góc BEF
=>ΔDAE đồng dạng với ΔBFE
Xét ΔDEG và ΔBEA có
góc DEG=góc BEA
góc EDG=góc EBA
=>ΔDEG đồng dạng với ΔBEA
b: ΔDAE đồng dạng với ΔBFE
=>AE/FE=DE/BE=DA/BF
ΔDEG đồng dạng với ΔBEA
=>AE/EG=BE/DE
=>EG/AE=AE/FE
=>AE^2=EG*EF