tìm tất cả x,y thỏa mãn x^2+5y^2-4xy+6x-8y+13≤0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x-2y-2)2+(y-6)2 =39-2A
A=< 39/2, max A là 39/2 khi x =14 và y =6
\(x^2-4xy+5y^2+6x-10y+10=0\)
\(x^2-2x\left(2y-3\right)+5y^2-10y+10=0\)
\(x^2-2x\left(2y-3\right)+\left(4y^2-12x+9\right)+\left(y^2+2x+1\right)=0\)
\(x^2-2x\left(2y-3\right)+\left(2y-3\right)^2+\left(y+1\right)^2=0\)
\(\left(x-2y+3\right)^2+\left(y+1\right)^2=0\)
Ta có: \(\hept{\begin{cases}\left(x-2y+3\right)^2\ge0\forall x;y\\\left(y+1\right)^2\ge0\forall y\end{cases}}\)\(\Rightarrow\left(x-2y+3\right)^2+\left(y+1\right)^2\ge0\forall x;y\)
Mà \(\left(x-2y+3\right)^2+\left(y+1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x-2y+3\right)^2=0\\\left(y+1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-2y+3=0\\y+1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x-2y+3=0\\y=-1\end{cases}\Leftrightarrow}\hept{\begin{cases}x+2+3=0\\y=-1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-5\\y=-1\end{cases}}}\)Vậy \(\hept{\begin{cases}x=-5\\y=-1\end{cases}}\)
Tham khảo nhé~
Sao anh kudo không tách thẳng như vầy luôn cho nhanh?(nhanh hơn đúng 1 dòng ở phần phân tích thôi:v)
\(A=x^2-4xy+5y^2+6x-10y+10=0\)
\(\Leftrightarrow\left(x^2-2.x.2y+4y^2\right)+\left(6x-12y\right)+9+\left(y^2+2y+1\right)=0\)
\(\Leftrightarrow\left[\left(x-2y\right)^2+2.\left(x-2y\right).3+3^2\right]+\left(y+1\right)^2=0\)
\(\Leftrightarrow\left(x-2y+3\right)^2+\left(y+1\right)^2=0\)
Đến đây ez rồi!
tìm tất cả các cặp số thực (x;y) sao cho y là số nhỏ nhất thoả mãn điều kiện \(x^2+5y^2+2y+4xy-3=0\)
\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2+2y+1\right)=4\)
\(\Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)
\(\Rightarrow\left(y+1\right)^2\le4\Rightarrow\left[{}\begin{matrix}\left(y+1\right)^2=0\\\left(y+1\right)^2=4\end{matrix}\right.\)
\(\Rightarrow y=\left\{-1;-3;1\right\}\)
Thế vào pt ban đầu tìm x nguyên tương ứng
\(x^2+5y^2+2y-4xy-3=0\left(1\right)\\ \Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2+2y+1\right)-4=0\\ \Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)
Ta có: \(\left(x-2y\right)^2+\left(y+1\right)^2=4\ge\left(y+1\right)^2\)
Mà \(y\in Z\Rightarrow\left(y+1\right)^2\in Z\Rightarrow\left(y+1\right)^2\in\left\{0;1;4\right\}\)
Với \(\left(y+1\right)^2=0\Rightarrow y+1=0\Rightarrow y=-1\)
Thay y=-1 vào pt (1) ta tìm được \(\left\{{}\begin{matrix}x=-4\\x=0\end{matrix}\right.\)
Với \(\left(y+1\right)^2=1\Rightarrow\left[{}\begin{matrix}y+1=1\\y+1=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=0\\y=-2\end{matrix}\right.\)
Thay y=0 vào pt (1) ta không tìm được x nguyên
Thay y=-2 vào pt (1) ta không tìm được x nguyên
Với \(\left(y+1\right)^2=4\Rightarrow\left[{}\begin{matrix}y+1=-2\\y+1=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=-3\\y=1\end{matrix}\right.\)
Thay y=-3 vào pt (1) tìm được \(x=-6\)
Thay y=1 vào pt (1) tìm được \(x=2\)
Đưa phương trình trên về dạng (x-2y+3)^2+(y+2)^2\(\le0\)
Giải và tìm được x=-7 ; y=-2
Kết luận nghiệm x=-7 và y=-2