Cho tam giác ABC cân tại A. gọi M là trung điểm của BC. kẻ đường cao BP. Từ M, kẻ các đường thẳng MK và MH lần lượt vuông góc với AC và AB tại K và H
A) chứng minh Tam giác ABM= tam giác ACM
b) chứng minh BH= CK
c) Gọi I là giao điểm của BP và HM. Tam giác IBM là tam giác gì? vì sao?
Nghề của e, ngày nào cx gặp bài này lựa a cho dễ nè :333 b;c tự lm bn nhé !
*) Định lí bổ sung : Trong tam giác cân, đường phân giác suất phát từ đỉnh ứng với cạnh đáy, đồng thời là đường trung tuyến.
Vì \(\Delta\) ABC là \(\Delta\) cân tại A có
AM là đường trung tuyến nên AM vừa là đường cao vừa là đường phân giác
=> \(\widehat{BAM}\) = \(\widehat{MAC}\)
a, Xét \(\Delta\)AMB và \(\Delta\)MAC ta có
\(\widehat{BAM}=\widehat{MAC}\left(cmt\right)\)
AM _ chung
\(\widehat{AMB}=\widehat{AMC}\left(gt\right)\)
=> \(\Delta AMB=\Delta MAC\)(ch-cgv)
a) Vì tam giác ABC là tam giác cân có
AM là đường trugn tuyến
nên AM vừa là đường cao vừa là đường phân giác
=> Góc BAM = góc MAC
Xét ΔAMB và Δ MAC có
góc BAM = góc CAM ( CMT)
AM chung
AMB = góc AMC ( cùng bằng 90 độ )
Vậy Tam giác ABM = tam giác AMC ( c-g-v-g-n-k)
b) Xét tam giác AHM và tam giác AKM có
AM chung Góc AHM =AKM ( = 90 độ)
HAM =MAK ( cmt câu a)
nên Tam giác AHM = tam giác AKM (c-h-g-n)
=> HM = MK
và BHM = MKC , góc B= C
Nên tam giác BHM = KMC
=> HB = KC
c) Ta có BP VUÔNG GÓC VỚI AC
và MK vuông góc với AC
Nên BP// MK
=> góc PBM = KMC
Mà KMC = HMB ( vÌ tam giác BHM = KMC )
Suy ra : PBM = góc HMB
Hay tam giác IBM cân tại I