Tìm x biết
a) lx - 1l + x = 1
b) lx - 5l + x = 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì GTTĐ luôn lớn hơn hoặc bằng 0
=> x - 1 + x - 3 + x - 5 + x - 7 = 8
4x - 16 = 8
4x = 8 + 16
4x = 24
=> x = 6
Vậy.........
Bài 1:
\(A=\left|x-3\right|+\left|x-5\right|+\left|x-7\right|\)
\(\ge x-3+0+7-x=4\)
Dấu = khi \(\begin{cases}x-3\ge0\\x-5=0\\7-x\le0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge3\\x=5\\x\le7\end{cases}\)\(\Leftrightarrow x=5\)
Vậy MinA=4 khi x=5
Bài 2:
\(B=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-5\right|\)
\(\ge x-1+x-2+3-x+5-x=5\)
Dấu = khi \(\begin{cases}x-1\ge0\\x-2\ge0\\3-x\ge0\\5-x\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x\ge2\\x\le3\\x\le5\end{cases}\)\(\Leftrightarrow2\le x\le3\)
1.a) |x - 3/2| + |2,5 - x| = 0
=> |x - 3/2| = 0 và |2,5 - x| = 0
=> x = 3/2 và x = 2,5 (Vô lý vì x không thể xảy ra 2 trường hợp trong cùng 1 biểu thức).
Vậy x rỗng.
a) |x - 1| + x = 1
<=> |x - 1| = 1 - x
=> \(x\le1\)
b) |x - 5| + x = 1
<=> |x - 5| = 1 - x
Ta có: \(\left|x-5\right|=\left\{{}\begin{matrix}x-5\text{ nếu }x\ge5\\-x+5\text{ nếu }x< 5\end{matrix}\right.\)
Với \(x\ge5\), ta có:
x - 5 + x = 1
<=> 2x = 6 <=> x = 3 (loại)
Với x < 5, ta có:
-x + 5 + x = 1
<=> 5 = 1 (loại)
Vậy không có x thoả mãn
\(1)\)\(\left|x-1\right|+3x=1\)
\(\Leftrightarrow\)\(\left|x-1\right|=1-3x\)
+) Với \(x-1\ge0\)\(\Leftrightarrow\)\(x\ge1\) ta có :
\(x-1=1-3x\)
\(\Leftrightarrow\)\(x+3x=1+1\)
\(\Leftrightarrow\)\(4x=2\)
\(\Leftrightarrow\)\(x=\frac{1}{2}\) ( không thỏa mãn )
+) Với \(x-1< 0\)\(\Leftrightarrow\)\(x< 1\) ta có :
\(1-x=1-3x\)
\(\Leftrightarrow\)\(-x+3x=1-1\)
\(\Leftrightarrow\)\(2x=0\)
\(\Leftrightarrow\)\(x=0\) ( thỏa mãn )
Vậy \(x=0\)
Chúc bạn học tốt ~
\(2)\)\(B=\frac{3}{\left|x+5\right|+2018}\le\frac{3}{2018}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left|x+5\right|=0\)
\(\Leftrightarrow\)\(x=-5\)
Vậy GTLN của \(B\) là \(\frac{3}{2018}\) khi \(x=-5\)
Chúc bạn học tốt ~
b) |2x - 6| + |x + 2| = 8
1)Với \(x< -2\) ta được: -(2x - 6) + [-(x + 2)] = 8 => -2x + 6 - x - 2 = 8 => -3x = 8 + 2 -6 = 4 => x = \(\frac{-4}{3}\)(loại vì \(\frac{-4}{3}>-2\))
2)Với \(-2\le x< 3\)ta được: (2x - 6) + [-(x + 2)] => 2x - 6 - x - 2 = 8 => x = 8 + 6 +2 => x = 16 (loại vì 16 > 3)
3)Với \(x\ge3\) ta được: (2x - 6) + (x + 2) = 8 => 2x - 6 + x + 2 = 8 => 3x = 8 + 6 - 2 = 12 => x = 4(chọn)
Vậy x = 4
c) |2x - 1| + |2x - 5| = 4
1)Với \(x\le0,5\)ta được: -(2x - 1) + [-(2x - 5)] = 4 => -2x + 1 - 2x + 5 = 4 => -4x = 4 - 1 - 5 => -4x = -2 => x = \(0,5\)(loại)
2)Với \(0,5< x< 2,5\) ta được: 2x - 1 + [-(2x - 5)] = 4 => 2x -1 - 2x + 5 = 4 => 0x = 4 +1 -5 => 0x = 0 => x\(\in R\)
3)Với \(x\ge2,5\)ta được: 2x - 1 + 2x - 5 = 4 => 4x = 4 + 1 + 5 => 4x = 10 => x = \(2,5\) (chọn)
Vậy x = 0,5 hoặc x = 2,5
d) |x + 5| + |x + 3| = 9
1)Với \(x< -5\)ta được: -(x + 5) + [-(x + 3)] = 9 => -x - 5 - x - 3 = 9 => -2x = 9 + 5 + 3 => -2x = 17 => x = -8,5(chọn)
2)Với \(-5\le x< -3\) ta được: x + 5 + [-(x + 3)] = 9 => x + 5 -x - 3 = 9 => 0x = 9 - 5 + 3 => 0x = 7(vô lý)
3)Với \(x\le-3\)ta được: x + 5 + x + 3 = 9 => 2x = 9 - 5 - 3 => 2x = 1 => x = 0,5(chọn)
Vậy x = -8,5 hoặc x = 0,5
a) 7x - |2x - 4| = 3x + 12 => 7x - (2x - 4) = 3x + 12 khi (2x + 4)\(\ge\)0 => x\(\ge\)-0,5 hoặc 7x - [-(2x - 4)] = 3x + 12 khi (2x + 4) < 0 => x < -0,5
1)Với x \(\ge\)-0,5 thì 7x - (2x - 4) = 3x +12 => 7x - 2x + 4 = 3x + 12 => 7x -2x -3x = -4 +12 => 2x = 8 => x = 4(chọn vì 4 > -0,5)
2)Với x < -0,5 thì 7x - [-(2x - 4)] = 3x +12 => 7x + 2x - 4 = 3x + 12 => 7x +2x - 3x = 4 + 12 => 6x = 16 => x = \(\frac{8}{3}\)(loại vì \(\frac{8}{3}\)> -0,5 )
Vậy x = 4