K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2017

Câu hỏi của Vịtt Tên Hiền - Toán lớp 9 | Học trực tuyến

tham khảo thử xem

3 tháng 8 2018

tuong tự

11 tháng 12 2018

Ta có: \(\left(x+\sqrt{x^2+2018}\right)\left(y+\sqrt{y^2+2018}\right)=2018\)

\(\Leftrightarrow\left(x+\sqrt{x^2+2018}\right)\left(x-\sqrt{x^2+2018}\right)\left(y+\sqrt{y^2+2018}\right)=2018\left(x-\sqrt{x^2+2018}\right)\)

\(\Leftrightarrow\left(x^2-\left(x+2018\right)^2\right)\left(y+\sqrt{y^2+2018}\right)=2018\left(x-\sqrt{x^2+2018}\right)\)

\(\Leftrightarrow\left(x^2-x^2-2108\right)\left(y+\sqrt{y^2+2018}\right)=2018\left(x-\sqrt{x^2+2018}\right)\)

\(\Leftrightarrow-2018\left(y+\sqrt{y^2+2018}\right)=2018\left(x-\sqrt{x^2+2018}\right)\)

\(\Leftrightarrow-\left(y+\sqrt{y^2+2018}\right)=x-\sqrt{x^2+2018}\)

\(\Leftrightarrow-y-\sqrt{y^2+2018}=x-\sqrt{x^2+2018}\)                 (1)

Và có: \(\left(x+\sqrt{x^2+2018}\right)\left(y+\sqrt{y^2+2018}\right)=2018\)

\(\Leftrightarrow\left(x+\sqrt{x^2+2018}\right)\left(y+\sqrt{y^2+2018}\right)\left(y-\sqrt{y^2+2018}\right)=2018\left(y-\sqrt{y^2+2018}\right)\)

\(\Leftrightarrow\left(x-\sqrt{x^2+2018}\right)\left(y^2-y^2-2018\right)=2018\left(y-\sqrt{y^2+2018}\right)\)

\(\Leftrightarrow-2018\left(x-\sqrt{x^2+2018}\right)=2018\left(y-\left(\sqrt{y^2+2018}\right)\right)\)

\(\Leftrightarrow-x-\sqrt{x^2+2018}=y-\sqrt{y^2+2018}\)                        (2)

Lấy (1) + (2) vế + vế ta được:

\(\left(-y-\sqrt{y^2+2018}\right)+\left(-x-\sqrt{x^2+2018}\right)=\left(x-\sqrt{x^2+2018}\right)+\left(y-\sqrt{y^2+2018}\right)\)

<=>\(-y-\sqrt{y^2+2018}+-x-\sqrt{x^2+2018}=x-\sqrt{x^2+2018}+y-\sqrt{y^2+2018}\)

<=> -y - x = x + y

<=> 2y - 2x =0

<=> -2(x+y)=0

<=> x + y =0

vậy x+y=0

cộng điểm cho mk nha!!!!!!!!!!

7 tháng 7 2017

=0 bạn

7 tháng 7 2017

thank nhé, chứng minh x+y=0 ra phải không?

3 tháng 8 2018

vì bài toán bảo tính nên ta chỉ cần tìm \(x;y\) thỏa mãn tất cả các điều kiện bài toán rồi thế vào là được

ta có : \(x=0;y=0\) thõa mãn tất cả các điều kiện bài toán

thế vào \(S\) ta có : \(S=x+y=0+0=0\) vậy \(S=0\)

3 tháng 8 2018

\(\left(x+\sqrt{x^2+2018}\right)\left(y+\sqrt{y^2+2018}\right)=2018\)

\(\left(x^2+2018-x^2\right)\left(y+\sqrt{y^2+2018}\right)=2018\left(\sqrt{x^2+2018}-x\right)\)\(y+\sqrt{y^2+2018}=\sqrt{x^2+2018}-x\)

\(x+y=\sqrt{x^2+2018}-\sqrt{y^2+2018}\left(1\right)\)

Làm tương tự : \(x+y=\sqrt{y^2+2018}-\sqrt{x^2+2018}\left(2\right)\)

Cộng vế với vế \(\left(1;2\right)\) , ta có : \(x+y=0\)