cho tam giác abc và dbc chung cạnh huyền bc. a và d nằm trên nửa mặt phẳng bờ bc vẽ tia ax sao cho ac là p/g của dax. vẽ tia dy sao cho bd là p/g của ady. ax cắt dy tại e
a) c/m oeb thẳng hàng
b)c/m ba điểm ceb thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) AC là phân giác của ^DAx (gt) mà ^BAC = 900 (gt) nên AB là phân giác ngoài tại đỉnh A của \(\Delta\)ADE
Kết hợp với DB là phân giác trong tại đỉnh D của \(\Delta\)ADE
=> BE là phân giác của ^AEy
Mà EO là phân giác của ^AED (3 đường phân giác trong của \(\Delta\)AED đồng quy tại 1 điểm )
=> ^BEO = 900 (hai đường phân giác của hai góc kề bù)
Vậy OE \(\perp\)BE (đpcm)
b) Chứng minh tương tự câu a, ta được OE \(\perp\)EC
Từ đó suy ra \(BE\equiv CE\)
Vậy B,E,C thẳng hàng (đpcm)
a: Xét ΔABM và ΔACM có
AB=AC
AM chug
BM=CM
Do đó: ΔABM=ΔACM
b:
Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
Xét ΔAMC vuông tại M và ΔBMD vuông tại M có
MC=MD
MA=MB
Do đó: ΔAMC=ΔBMD
Suy ra: AC=BD
c: Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của CB
Do đó: ABDC là hình bình hành
Suy ra: AB//CD
d: Xét tứ giác ABCI có
AI//BC
AI=BC
Do đó: ABCI là hình bình hành
Suy ra: CI//AB
mà CD//AB
và CI,CD có điểm chung là C
nên C,I,D thẳng hàng