cho tam giác ABC có B=C
KẺ tia phân giác ADcủa ABC
gọi Ax là tia phân giác ngoài ở đỉnh A
Chứng tỏ rằng:
a, AD vuông góc với BC
b, Ax song song với BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Ta có: ΔABC cân tại A
mà AH là đường cao
nên AH là đường phân giác
Tam giác ABC có: góc B +góc C + góc BAC = 180 o => 40 o + 40 o + BAC = 180 o => góc BAC = 180 o - 80 o = 100 o
=> góc BAy = 180 o - BAC = 180 o - 100 o = 80 o (do BAy là góc ngoài tam giác )
=> góc xAB = yAB/2 = 80 o/2 = 40 o (do Ax là p/g của góc yAB)
=> góc xAB = ABC (= 40 o) Mà hai góc này ở vị trí SLT => Ax // BC
Ta có góc B=góc C=40 độ=> góc A= 180 độ- góc B- góc C= 100 độ => góc ngoài của góc A là 80 độ
Ax là phân giác của góc ngoài ở đỉnh A=> góc tạo bởi Ax và AB là 40 độ mà góc B=40 độ=> góc đó=góc B mà 2 góc ở vị trí so le trong=> Ax//BC
AI NHANH TAY MÌNH TÍCH CHO ( PHẢI ĐÚNG)
NHỚ VẼ HÌNH ĐẤY