K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2022

\(a;b\ge-7\) \(bđt\) \(minicopxki\)

\(\Rightarrow\sqrt{a+7}+\sqrt{b+7}=\sqrt{\sqrt{a}^2+\sqrt{7}^2}+\sqrt{\sqrt{b}^2+\sqrt{7}^2}\ge\sqrt{\left(\sqrt{a}+\sqrt{b}\right)^2+28}\)

\(\Rightarrow9\ge\sqrt{\left(\sqrt{a}+\sqrt{b}\right)^2+28}\)

\(\Leftrightarrow\left(\sqrt{a}+\sqrt{b}\right)^2\le81-28=53\Rightarrow\sqrt{a}+\sqrt{b}\le\sqrt{53}\)

\(dâu"="xảy\) \(ra\Leftrightarrow a=b=13,25\)

24 tháng 7 2022

kẻm ưn nhiều nha

 

AH
Akai Haruma
Giáo viên
28 tháng 10 2021

Lời giải:

Áp dụng BĐT AM-GM:
\(P=\sum \sqrt{\frac{ab}{c+ab}}=\sum \sqrt{\frac{ab}{c(a+b+c)+ab}}=\sum \sqrt{\frac{ab}{(c+a)(c+b)}}\)

\(\leq \sum \frac{1}{2}\left(\frac{a}{c+a}+\frac{b}{c+b}\right)=\frac{1}{2}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)=\frac{3}{2}\)

Vậy $P_{\max}=\frac{3}{2}$ khi $a=b=c=\frac{1}{3}$

2 tháng 6 2019

Có bất đẳng thức xy+zt≥x+zy+txy+zt≥x+zy+t với x,z≥0x,z≥0 ,y,t>0y,t>0

Giả sử cc  lớn nhất trong các số a,b,ca,b,c thì c≥13c≥13

Do a,b,c≥0a,b,c≥0 nên

Ta có P2≥aa+1+bb+1+cc+1≥a+ba+b+2+cc+1P2≥aa+1+bb+1+cc+1≥a+ba+b+2+cc+1

Mà a+ba+b+2+cc+1−12=1−c3−c+c−12(c+1)=(1−c)(3c−1)(3−c)(2c+2)≥0

2 tháng 6 2019

sai đó nha

...

...

NV
3 tháng 1 2022

\(\left(a+1\right)\left(b+1\right)=4ab\Leftrightarrow\left(\dfrac{1}{a}+1\right)\left(\dfrac{1}{b}+1\right)=4\)

Đặt \(\left(\dfrac{1}{a};\dfrac{1}{b}\right)=\left(x;y\right)\Rightarrow\left(x+1\right)\left(y+1\right)=4\Rightarrow xy=3-x-y\)

\(P=\dfrac{x}{\sqrt{x^2+3}}+\dfrac{y}{\sqrt{y^2+3}}\le\dfrac{x}{\sqrt{\dfrac{\left(x+3\right)^2}{4}}}+\dfrac{y}{\sqrt{\dfrac{\left(y+3\right)^2}{4}}}=\dfrac{2x}{x+3}+\dfrac{2y}{y+3}\)

\(P\le\dfrac{4xy+6x+6y}{\left(x+3\right)\left(y+3\right)}=\dfrac{4xy+6x+6y}{xy+3x+3y+9}=\dfrac{4\left(3-x-y\right)+6x+6y}{3-x-y+3x+3y+9}=\dfrac{2x+2y+12}{2x+2y+12}=1\)

\(P_{max}=1\) khi \(x=y=1\) hay \(a=b=1\)

2 tháng 10 2021

Tham khảo:

Với các số thực không âm a,b,c thỏa mãn \(a^2+b^2+c^2=1\), tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức:  \(Q=\s... - Hoc24

8 tháng 6 2016

Ta có: \(\frac{bc}{\sqrt{a+bc}}=\frac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\frac{\frac{bc}{a+b}+\frac{bc}{a+c}}{2}\)

\(\frac{ca}{\sqrt{b+ac}}=\frac{ca}{\sqrt{\left(a+b\right)\left(b+c\right)}}\le\frac{\frac{ca}{a+b}+\frac{ca}{b+c}}{2}\)

\(\frac{ab}{\sqrt{c+ab}}=\frac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}\le\frac{\frac{ab}{a+c}+\frac{ab}{b+c}}{2}\)

Cộng 3 vế ta được: \(P\le\frac{\frac{bc}{a+b}+\frac{bc}{a+c}+\frac{ca}{a+b}+\frac{ca}{b+c}+\frac{ab}{a+c}+\frac{ab}{b+c}}{2}\)

\(=\frac{\frac{c\left(a+b\right)}{a+b}+\frac{b\left(a+c\right)}{a+c}+\frac{a\left(b+c\right)}{b+c}}{2}=\frac{a+b+c}{2}=\frac{1}{2}\)

        Vậy  MinP = 1/2 

8 tháng 6 2016

\(\frac{bc}{\sqrt{a+bc}}=\frac{bc}{\sqrt{a.1+bc}}=\frac{bc}{\sqrt{a\left(a+b+c\right)+bc}}=\frac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\frac{bc}{a+b}+\frac{bc}{a+c}\)

27 tháng 10 2021

TK: Cho các số thực dương a, b, c thỏa mãn a + b+ c = 3. Chứng minh rằng: \(\sqrt{2a^2+\frac{7}{b^2}}+\sqrt{2b^2+\frac{7}{... - Hoc24