giải bất phương trinh
\(\left(x-1\right)\sqrt{x^2-3x+4}>x^2-3x+2.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left(x-1\right)\sqrt{x^2-3x+4}-\left(x-1\right)\left(x-2\right)>0\)
\(\Leftrightarrow\left(x-1\right)\left(\sqrt{x^2-3x+4}-x+2\right)>0\)
TH1: \(\left\{{}\begin{matrix}x>1\\\sqrt{x^2-3x+4}>x-2\end{matrix}\right.\)
- Với \(1< x\le2\) BPT luôn đúng
- Với \(x>2\Rightarrow\left\{{}\begin{matrix}x>1\\x^2-3x+4>x^2-4x+4\end{matrix}\right.\) \(\Rightarrow x>1\)
TH2: \(\left\{{}\begin{matrix}x< 1\\\sqrt{x^2-3x+4}< x-2\end{matrix}\right.\) (vô nghiệm)
Vậy nghiệm của BPT là \(x>1\)