K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2020

tự làm là mỗi hạnh phúc của mọi công dân

NV
21 tháng 1 2021

Đặt \(\left(BC;CA;AB\right)=\left(a;b;c\right)\)

Kẻ hai trung tuyến AM, CN cắt nhau tại G

\(AG^2=\dfrac{4}{9}AM^2=\dfrac{1}{9}\left(2b^2+2c^2-a^2\right)\)

\(BG^2=\dfrac{4}{9}BN^2=\dfrac{1}{9}\left(2a^2+2c^2-b^2\right)\)

Pitago tam giác vuông ABG:

\(AG^2+BG^2=AB^2\Leftrightarrow\dfrac{1}{9}\left(2b^2+2c^2-a^2+2a^2+2c^2-b^2\right)=c^2\)

\(\Leftrightarrow a^2+b^2=5c^2\Leftrightarrow5=\dfrac{a^2+b^2}{c^2}\ge\dfrac{\left(a+b\right)^2}{2c^2}\)

\(\Rightarrow S=\dfrac{a+b}{c}\le\sqrt{10}\)

NV
1 tháng 6 2020

Gọi G là trọng tâm tam giác, các trung tuyến \(AM=m_a\) ; \(BN=m_b\)

Đặt cạnh \(BC=a;AC=b;AB=c\)

\(AG^2=\frac{4}{9}m_a^2=\frac{1}{9}\left(2b^2+2c^2-a^2\right)\)

\(BG^2=\frac{4}{9}m_b^2=\frac{1}{9}\left(2a^2+2c^2-b^2\right)\)

Mặt khác theo Pitago: \(AG^2+BG^2=AB^2\)

\(\Leftrightarrow\frac{1}{9}\left(4c^2+a^2+b^2\right)=c^2\)

\(\Leftrightarrow a^2+b^2=5c^2\)

\(\Leftrightarrow5c^2\ge\frac{1}{2}\left(a+b\right)^2\Leftrightarrow\frac{\left(a+b\right)^2}{c^2}\le10\)

\(\Leftrightarrow\frac{a+b}{c}\le\sqrt{10}\)

26 tháng 12 2015

NA/BA = NC/BC 
Vì Tam giác ABC vuông tại A, biết AB=3cm,BC=5cm => AC= 4(cm) 
=> NC-NA=4 (cm) 
=> NC/BC = NA/BA = ( NC-NA)/(BC-AB) = 2 
=> NA= BA*2 =6 (cm)

9 tháng 5 2017

A E B C F I M D

a) Xét tam giác BEM và tam giácCFM

có:BM=MC(gt)

     góc EBM=gócFCM(tam giác ABC can^)
->T/g BEM=t/g CFM(c.huyền g. nhon)

b)

Xét tam giác vg AEM va t/g vg AFM

có:EM=MF(t/g BEM=t/gAFM)

    AM là cạnh chung

->t/g AEM =t/g AFM( c/ huyền -c.góc vg)

->AE=AF(2 cạnh tương ứng)

Xét tam giác AEI và t/g AFI 

có:MF=EM(t/g BEM= t/g CFM)

    AM là cạnh chung

    AF=AE(C/ m trên)

->t/g AEI =t/g AFI(c-c-c)

->EI = IF(2 cạnh tương ứng)

->góc AIE= góc AIF(2 tương ứng)

=>AE là đường trung trực của EF

c(mik ko pt lm) 

3 tháng 5 2018

a và b bạn Hương Sơn 

c) Ta có: 

\(\Delta ABC\)cân

có AM là đường trung tuyến 

=> AM cũng  là đường trung trực

=> \(AM\perp BC\)

=> AM = 90 độ

Vì \(\Delta ABC\)cân 

=> Góc ABM = góc ACM          (1)

mà Góc ABD = góc ACD = 90 độ            (2)

Từ (1) và (2) => Góc MBD = góc MCD 

Xét \(\Delta DMB\)và \(\Delta DMC\)có :

DM : cạnh chung     (1)

Góc MBD = góc MCD ( chứng minh trên )            (2)

BM = MC ( vì AM là đường trung tuyến của tam giác ABC )                  (3)

Từ (1) ; (2) và (3) => \(\Delta DMB=\Delta DMC\)(cạnh - góc - cạnh)

=> Góc CMD = góc BMD ( cặp góc tương ứng)

Mà Góc CMD + góc BMD = 180 độ

=> Góc CMD = BMD = 180 : 2 = 90 độ

Vì Góc AMC = 90 độ ( vì AM là đường trung trực)

và  góc CMD = 90 độ

=> AMC + CMD = AMD

=> 90 + 90 = AMD 

=> AMD = 180 độ

=>   Ba điểm A ; M ; D thẳng hàng. ( điều phải chứng minh)

Chúc bạn học tốt !