Giải phương trình :
\(x+3-\sqrt{14x-15}=\frac{1-\sqrt{10x-19}}{1-x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: ...
\(\Leftrightarrow\left(x-1\right)\left(x+3-\sqrt{14x-15}\right)-\sqrt{10x-19}+1=0\)
\(\Leftrightarrow x^2+2x-2-\left(x-1\right)\sqrt{14x-15}-\sqrt{10x-19}=0\)
\(\Leftrightarrow x-\sqrt{10x-19}+\left(x-1\right)\left(x+2\right)-\left(x-1\right)\sqrt{14x-15}=0\)
\(\Leftrightarrow\frac{x^2-10x+19}{x+\sqrt{10x-19}}+\left(x-1\right)\left(\frac{x^2-10x+19}{x+2+\sqrt{14x+15}}\right)=0\)
\(\Leftrightarrow\left(x^2-10x+19\right)\left(\frac{1}{x+\sqrt{10x-19}}+\frac{x-1}{x+2+\sqrt{14x+15}}\right)=0\)
\(\Leftrightarrow x^2-10x+19=0\)
b, ĐK \(x\ge-4\)
PT
<=> \(\left(x-\sqrt{x+4}\right)+\left(\sqrt{2x^2-10x+17}-2x+3\right)=0\)
<=> \(\frac{x^2-x-4}{x+\sqrt{x+4}}+\frac{-2x^2+2x+8}{\sqrt{2x^2-10x+17}+2x-3}=0\)với \(x+\sqrt{x+4}\ne0\)
<=> \(\frac{x^2-x-4}{x+\sqrt{x+4}}-\frac{2\left(x^2-x-4\right)}{\sqrt{2x^2-10x+17}+2x-3}=0\)
<=> \(\orbr{\begin{cases}x^2-x-4=0\\\frac{1}{x+\sqrt{x+4}}-\frac{2}{\sqrt{2x^2-10x+17}+2x-3}=0\left(2\right)\end{cases}}\)
Giải (2)
=> \(2x+2\sqrt{x+4}=2x-3+\sqrt{2x^2-10x+17}\)
<=> \(\sqrt{2x^2-10x+17}=2\sqrt{x+4}+3\)
<=> \(2x^2-10x+17=4\left(x+4\right)+9+12\sqrt{x+4}\)
<=> \(x^2-7x-4=6\sqrt{x+4}\)
<=> \(\left(x-6\right)^2+5x-40=6\sqrt{6\left(x-6\right)-5x+40}\)
Đặt x-6=a;\(\sqrt{6\left(x-6\right)-5x+40}=b\)
=> \(\hept{\begin{cases}a^2+5x-40=6b\\b^2+5x-40=6a\end{cases}}\)
=> \(a^2-b^2+6\left(a-b\right)=0\)
<=> \(\orbr{\begin{cases}a=b\\a+b+6=0\end{cases}}\)
+ a=b
=> \(x-6=\sqrt{x+4}\)
=> \(\hept{\begin{cases}x\ge6\\x^2-13x+32=0\end{cases}}\)=> \(x=\frac{13+\sqrt{41}}{2}\)
+ a+b+6=0
=> \(x+\sqrt{x+4}=0\)(loại)
Vậy \(S=\left\{\frac{13+\sqrt{41}}{2};\frac{1+\sqrt{17}}{2}\right\}\)
Một vài mẹo sử dụng casio FX-570VN.pdf - Google Drive
Bạn kéo xuống mục số 4, khoảng trang 36
Linh Chi
ĐKXĐ: \(x\ge\frac{9}{10}\)
\(\Leftrightarrow x^2+4x+1-x\sqrt{14x-1}-\sqrt{10x-9}=0\)
\(\Leftrightarrow x\left(x+3-\sqrt{14x-1}\right)+x+1-\sqrt{10x-9}=0\)
\(\Leftrightarrow\frac{x\left[\left(x+3\right)^2-\left(14x-1\right)\right]}{x+3+\sqrt{14x-1}}+\frac{\left(x+1\right)^2-\left(10x-9\right)}{x+1+\sqrt{10x-9}}=0\)
\(\Leftrightarrow\frac{x\left(x^2-8x+10\right)}{x+3+\sqrt{14x-1}}+\frac{x^2-8x+10}{x+1+\sqrt{10x-9}}=0\)
\(\Leftrightarrow\left(x^2-8x+10\right)\left(\frac{x}{x+3+\sqrt{14x-1}}+\frac{1}{x+1+\sqrt{10x-9}}\right)=0\)
\(\Leftrightarrow x^2-8x+10=0\) (casio)
a) ĐK : \(x\ge1\)
pt <=> \(\sqrt{3^2\left(x-1\right)}-\frac{1}{2}\sqrt{2^2\left(x-1\right)}=2\)
<=> \(\left|3\right|\sqrt{x-1}-\frac{1}{2}\cdot\left|2\right|\sqrt{x-1}=2\)
<=> \(3\sqrt{x-1}-1\sqrt{x-1}=2\)
<=> \(2\sqrt{x-1}=2\)
<=> \(\sqrt{x-1}=1\)
<=> \(x-1=1\)=> \(x=2\)( tm )
b) \(3x-\sqrt{49-14x+x^2}=15\)
<=> \(\sqrt{x^2-14x+49}=3x-15\)
<=> \(\sqrt{\left(x-7\right)^2}=3x-15\)
<=> \(\left|x-7\right|=3x-15\)(1)
Với x < 7
(1) <=> 7 - x = 3x - 15
<=> -x - 3x = -15 - 7
<=> -4x = -22
<=> x = 11/2 ( tm )
Với x ≥ 7
(1) <=> x - 7 = 3x - 15
<=> x - 3x = -15 + 7
<=> -2x = -8
<=> x = 4 ( ktm )
Vậy x = 11/2
a) \(ĐKXĐ:x\ge1\)
\(\sqrt{9x-9}-\frac{1}{2}\sqrt{4x-4}=2\)
\(\Leftrightarrow\sqrt{9.\left(x-1\right)}-\frac{1}{2}.\sqrt{4\left(x-1\right)}=2\)
\(\Leftrightarrow3\sqrt{x-1}-\frac{1}{2}.2\sqrt{x-1}=2\)
\(\Leftrightarrow3\sqrt{x-1}-\sqrt{x-1}=2\)
\(\Leftrightarrow2\sqrt{x-1}=2\)
\(\Leftrightarrow\sqrt{x-1}=1\)
\(\Leftrightarrow x-1=1\)\(\Leftrightarrow x=2\)( thỏa mãn ĐKXĐ )
Vậy phương trình có nghiệm là \(x=2\)
b) \(3x-\sqrt{49-14x+x^2}=15\)
\(\Leftrightarrow3x-\sqrt{\left(7-x\right)^2}=15\)
\(\Leftrightarrow3x-\left|7-x\right|=15\)
+) TH1: Nếu \(7-x< 0\)\(\Leftrightarrow x>7\)
thì \(3x-\left(x-7\right)=15\)
\(\Leftrightarrow3x-x+7=15\)\(\Leftrightarrow2x=8\)
\(\Leftrightarrow x=4\)( không thỏa mãn )
+) TH2: Nếu \(7-x\ge0\)\(\Leftrightarrow x\le7\)
thì \(3x-\left(7-x\right)=15\)
\(\Leftrightarrow3x-7+x=15\)
\(\Leftrightarrow4x=22\)\(\Leftrightarrow x=\frac{22}{4}\)( thỏa mãn ĐKXĐ )
Vậy nghiệm của phương trình là \(x=\frac{22}{4}\)
Bạn tham khảo:
Câu hỏi của Nguyễn Thùy Chi - Toán lớp 10 | Học trực tuyến