Cho tam giác abc có AB=6cm, AC=12cm, kẻ phân giác AD. Gọi G là trọng tâm của tam giác ABC thì DG bằng bao nhiêu?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xét tam giác ABD và tam giác ACD có:
AB = AC (gt)
góc A1 = góc A2 (AD là p/giác)
AD chung
=> tam giác ABD = tam giác ACD (c.g.c)
a) Xét 2 tam giác ABD và ACD ta có:
góc BAD = góc CAD (AD là đường phân giác góc A)
AB = AC (gt)
góc ABD = góc ACD (gt)
\(\Rightarrow\) \(\Delta ABD=\Delta ACD\) (g.c.g) (đpcm)
b) Ta có: BD = CD ( do tam giác ABD = tg ACD)
\(\Rightarrow\) AD là đường trung tuyến của tam giác ABC
Vì G nằm trên giao của 3 đường trung tuyến (G là trọng tâm của tg ABC) nên G \(\in\) AD
Vậy A,D,G thẳng hàng
c) Vì G là trọng tâm nên DG/AG = 1/2
Mà DG+AG = AD = 10 (cm)
\(\Rightarrow\) DG = 10/3 (cm)
a) Gọi tam giác ACB có AN là phân giác và trung tuyến AM
\(\frac{NB}{NC}=\frac{AB}{AC}=\frac{6}{12}=\frac{1}{2}\)
\(\Rightarrow NB=\frac{NC}{2}\)
NC+NB=NC+0,5NC=1,5NC=BC=9 (cm) <=> NC=6cm
=>NB=3cm
Ta có: \(\frac{NB}{BC}=\frac{3}{9}=\frac{1}{3}\)
Xét tam giác ABN có BI là phân giác
=> \(\frac{AI}{IN}=\frac{BA}{BN}=\frac{6}{3}=2\)
Lại có AM là trung tuyến nên \(\frac{AG}{GM}=2\)
\(\Rightarrow\frac{AG}{GM}=\frac{AI}{IN}=2\)
=> IG//BC(Talet đảo) (đpcm)
b) \(BM=\frac{9}{2}=4,5\left(cm\right)\)
=> MN=4,5 -3=1,5 (cm)
\(\frac{AG}{AM}=\frac{2}{3}=\frac{IG}{MN}\)(Định lý Talet)
\(\Rightarrow\frac{2}{3}=\frac{IG}{1,5}\Rightarrow IG=1cm\)
a) Theo tính chất đường phân giác ta có:
\(\frac{AD}{DC}=\frac{BA}{BC}\) => \(\frac{AD}{AD+DC}=\frac{BA}{BA+BC}\) (tính chất dãy tỉ số bằng nhau)
Suy ra: \(\frac{AD}{AC}=\frac{BA}{BA+BC}\) => \(\frac{AD}{6}=\frac{5}{5+7}\) => AD = 2,5.
b) Xét tam giác ABD có AO là phân giác. Suy ra: \(\frac{OB}{OD}=\frac{AB}{AD}=\frac{5}{2,5}=2\)
Xét tam giác BDM có: \(\frac{OB}{OD}=2\), \(\frac{GB}{GM}=2\) (theo tính chất trọng tâm).
Suy ra \(\frac{OB}{OD}=\frac{GB}{GM}\) (cùng bằng 2) => OG // DM (theo định lý Ta-let đảo)
Vậy OG//AC
khó quá bạn à