K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2020

Bài làm:

Ta có: \(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)

\(=\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}\)

\(=\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{b}+\frac{b}{a}\right)\)

Áp dụng Bất đẳng thức Cauchy (AM-GM), ta được:

\(\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{b}+\frac{b}{a}\right)\)\(\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}+2\sqrt{\frac{b}{c}.\frac{c}{b}}+2\sqrt{\frac{a}{b}.\frac{b}{a}}\)

\(=2.\sqrt{1}+2.\sqrt{1}+2.\sqrt{1}\)\(=2+2+2\)\(=6\)

=> \(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge6\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\frac{a}{b}=\frac{b}{a}\\\frac{c}{a}=\frac{a}{c}\\\frac{b}{c}=\frac{c}{b}\end{cases}\Rightarrow a=b=c=1}\)

Vậy \(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}=6\)khi \(a=b=c=1\)

Học tốt!!!!

7 tháng 6 2020

Theo giả thiết : \(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}=6\)

\(< =>\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}=6\)

\(< =>\frac{ac+bc}{c^2}+\frac{ba+ca}{a^2}+\frac{cb+ba}{b^2}=6\)

Ta có : \(VT=\frac{ac+bc}{c^2}+\frac{ba+ca}{a^2}+\frac{cb+ba}{b^2}\)

\(=\frac{ac}{c^2}+\frac{bc}{c^2}+\frac{ba}{a^2}+\frac{ca}{a^2}+\frac{cb}{b^2}+\frac{ba}{b^2}\)

\(\ge6\sqrt[6]{\frac{a^2c^2b^2c^2b^2a^2}{a^4b^4c^4}}=6\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)

Xin chém cách khác ạ =))

11 tháng 2 2016

Đây là điều đương nhiên ko cần phải chứng minh
 

18 tháng 4 2018

ta có:

a+b=c+d

=> d=a+b-c

vì a.b=c.d+1

mà d=a+b-c nên ta có

a.b-c(a+b-c)=1

=>a.b-c.a-b.c-c^2=a.(b-c)-c.(b-c)=1

=>a-c=b-c

=> a=b

11 tháng 1 2016

Ta có: a+b+b+c+c+a=11+3+2
    <=> 2(a+b+c)=16
    <=> a+b+c=8 =>c=8-11=-3;a=8-3=5;b=8-2=6

11 tháng 1 2016

a + b - b -c = 11 -3 = 8

a - c = 2

a = (2+  2):2 = 2

c = 2 - 2 = 0

b = 11 - 2 = 9

6 tháng 12 2018

Ns chung là c nguyên dương

Đang dùng đt chi

5 tháng 4 2015

Ta có (a+b+c)(1/a+1/b+1/c) = 1 + 1 + 1 + a/b + a/c + b/a + b/c + c/a + c/b

                                         = 3 + (a/b + b/a) + (a/c + c/a) + (b/c + c/b) (1)

Vì a, b, c > 0 nên ta có (Áp dụng Côsi)

a/b + b/a \(\ge\) 2 (2)

a/c + c/a \(\ge\) 2 (3)

b/c + c/b \(\ge\) 2 (4)

Từ (1), (2), (3) và (4) suy ra

(a+b+c)(1/a+1/b+1/c) \(\ge\) 9

Dấu "=" xảy ra <=> a = b = c