cho 3 số a,b,c biết a/1+ab=b/1+bc=c/1+ca tính M=abc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có A=\(\left(ab+bc+ca\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-abc\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)
=\(2\left(a+b+c\right)+\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}-\frac{ab}{c}-\frac{bc}{a}-\frac{ca}{b}=2\left(a+b+c\right)\)
\(A=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2=a^2-ab+b^2+3ab\left(1-2ab\right)+6a^2b^2\)
=\(\left(a+b\right)^2-3ab+3ab-6a^2b^2+6a^2b^2=1\)
2) Ta có \(A=\left(a-1\right)\left(b-1\right)\left(c-1\right)=abc-ab-bc-ca+a+b+c-1=0\)
Câu hỏi của TAK Gaming - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo nhé!
https://hoc24.vn/hoi-dap/question/562943.html
Em xem ở đây nhé.
Lời giải:
\(a+b+c+ab+bc+ac+abc=0\)
\(\Leftrightarrow (a+b+ab+1)+c+bc+ac+abc=1\)
\(\Leftrightarrow (a+b+ab+1)+c(1+b+a+ab)=1\)
\(\Leftrightarrow (a+1)(b+1)+c(a+1)(b+1)=1\)
\(\Leftrightarrow (a+1)(b+1)(c+1)=1\)
Đặt \((a+1,b+1,c+1)=(x,y,z)\Rightarrow (a,b,c)=(x-1,y-1,z-1)\) và \(xyz=1\)
Khi đó:
\(P=\frac{1}{3+2(x-1)+y-1+(x-1)(y-1)}+\frac{1}{3+2(y-1)+z-1+(y-1)(z-1)}+\frac{1}{3+2(z-1)+x-1+(x-1)(z-1)}\)
\(=\frac{1}{x+xy+1}+\frac{1}{y+yz+1}+\frac{1}{z+xz+1}\)
\(=\frac{yz}{xyz+xy.yz+yz}+\frac{1}{y+yz+1}+\frac{y}{zy+xz.y+y}\)
\(=\frac{yz}{1+y+yz}+\frac{1}{y+yz+1}+\frac{y}{yz+1+y}=\frac{yz+1+y}{yz+1+y}=1\)
Ta có đpcm.
Áp dụng giả thiết từ đề bài :
\(M=\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)
\(\Leftrightarrow M=\frac{a}{ab+a+abc}+\frac{b}{bc+b+1}+\frac{bc}{abc+bc+b}\)
\(\Leftrightarrow M=\frac{1}{b+1+bc}+\frac{b}{bc+b+1}+\frac{bc}{1+bc+b}\)
\(\Leftrightarrow M=\frac{1+b+bc}{b+1+bc}=1\)
Vậy M = 1
Các số ab=a.b hay ab=ab;bc=b.c hay bc=bc;ca=a.c hay ca=ca
Và abc=a.b.c hay abc=abc
Trả lời nhanh mk giúp cho
Chúc bn học tốt