Cho các số không âm x, y, z thỏa mãn x+y+z=1. Tìm GTLN và GTNN của biểu thức P=\(x^2+y^2+z^2+\frac{9}{2}xyz\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt \(\hept{\begin{cases}x+y-z=a\\y+z-x=b\\z+x-y=c\end{cases}\Rightarrow}x=\frac{a+c}{2};y=\frac{b+a}{2};z=\frac{c+b}{2}\)
Suy ra bất đẳng thức cần chứng minh tương đương với: \(\frac{a+b}{2}.\frac{b+c}{2}.\frac{c+a}{2}\ge abc\Leftrightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{8}\ge abc\)\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
Áp dụng bất đẳng thức AM-GM: \(\hept{\begin{cases}a+b\ge2\sqrt{ab}\ge0\\b+c\ge2\sqrt{bc}\ge0\\c+a\ge2\sqrt{ca}\ge0\end{cases}\Rightarrow}\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\sqrt{\left(abc\right)^2}=8abc\)
Vật bất đẳng thức được chứng minh
Dấu "=" xảy ra khi \(a=b=c\Leftrightarrow x=y=z\)
\(2=x^2+y^2+z^2\ge y^2+z^2\ge2yz\Rightarrow yz\le1\)
\(P=x\left(1-yz\right)+y+z\Rightarrow P^2\le\left[x^2+\left(y+z\right)^2\right]\left[\left(1-yz\right)^2+1\right]\)
\(P^2\le\left(2+2yz\right)\left(y^2z^2-2yz+2\right)\)
\(P^2\le2\left(yz\right)^3-2\left(yz\right)^2+4=2y^2z^2\left(yz-1\right)+4\le4\)
\(\Rightarrow P\le2\)
\(P_{max}=2\) khi \(\left(x;y;z\right)=\left(0;1;1\right)\) và các hoán vị
Cho hỏi dòng đầu tiên là BĐT gì vậy?
Áp dụng BĐT:
\(xyz\ge\left(x+y-z\right)\left(y+z-x\right)\left(x+z-y\right)\)
\(\Leftrightarrow xyz\ge\left(1-2x\right)\left(1-2y\right)\left(1-2z\right)\)
\(\Leftrightarrow xyz\ge1+4\left(xy+yz+zx\right)-2\left(x+y+z\right)-8xyz\)
\(\Leftrightarrow9xyz\ge4\left(xy+yz+zx\right)-1\)
\(\Rightarrow P=x^2+y^2+z^2+\frac{9}{2}xyz\ge x^2+y^2+z^2+2\left(xy+yz+zx\right)-\frac{1}{2}\)
\(\Leftrightarrow P\ge\left(x+y+z\right)^2-\frac{1}{2}=\frac{1}{2}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)
Lại có:
\(xy+yz+zx=\left(xy+yz+zx\right)\left(x+y+z\right)\ge3\sqrt[3]{x^2y^2z^2}.3\sqrt[3]{xyz}=9xyz\)
\(\Rightarrow P\le x^2+y^2+z^2+\frac{1}{2}\left(xy+yz+zx\right)\)
\(P\le\left(x+y+z\right)^2-\frac{3}{2}\left(xy+yz+zx\right)\le\left(x+y+z\right)^2=1\)
Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(0;0;1\right)\) và hoán vị