Chứng minh rằng : n5 -2011n chia hết cho 30 với n là số tự nhiên.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,60 chia hết cho 15 => 60n chia hết cho 15 ; 45 chia hết cho 15 => 60n+45 chia hết cho 15 (theo tính chất 1)
60n chia hết cho 30 ; 45 không chia hết cho 30 => 60n+45 không chia hết cho 30 (theo tính chất 2)
b,Giả sử có số a thuộc N thoả mãn cả 2 điều kiện đã cho thì a=15k+6 (1) và a=9q+1.
Từ (1) suy ra a chia hết cho 3, từ (2) suy ra a không chia hết cho 3. Đó là điều vô lí. Vậy không có số tự nhiên nào thoả mãn đề.
c,1005 chia hết cho 15 => 1005a chia hết cho 15 (1)
2100 chia hết cho 15 => 2100b chia hết cho 15 (2)
Từ (1) và (2) suy ra 1005a+2100b chia hết cho 15 (theo tính chất 1)
d,Ta có : n^2+n+1=nx(n+1)+1
nx(n+1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2 suy ra nx(n+1)+1 là một số lẻ nên không chia hết cho 2.
nx(n+1) là tích của 2 số tự nhiên liên tiếp nên không có tận cùng là 4 hoặc 9 nên nx(n+1)+1 không có tận cùng là 0 hoặc 5, do đó nx(n+1)+1 không chia hết cho 5.
Mình xin trả lời ngắn gọn hơn! a)60 chia hết cho 15=> 60n chia hết cho 15 15 chia hết cho 15 =>60n+15 chia hết cho 15. 60 chia hết cho 30=>60n chia hết cho 30 15 không chia hết cho 30 =>60n+15 không chia hết cho 30 b)Gọi số tự nhiên đó là A Giả sử A thỏa mãn cả hai điều kiện => A= 15.x+6 & = 9.y+1 Nếu A = 15x +6 => A chia hết cho 3 Nếu A = 9y+1 => A không chia hết cho 3 => vô lí.=> c) Vì 1005;2100 chia hết cho 15=> 1005a; 2100b chia hết cho 15. => 1500a+2100b chia hết cho 15. d) A chia hết cho 2;5 => A chia hết cho 10. => A là số chẵn( cụ thể hơn là A là số có c/s tận cùng =0.) Nếu n là số chẵn => A là số lẻ. (vì chẵn.chẵn+chẵn+lẻ=lẻ) Nếu n là số lẻ => A là số lẻ (vì lẻ.lẻ+lẻ+lẻ=lẻ) => A không chia hết cho 2;5
n^5-n= (n-1)n(n+1)(n^2+1)
(n-1)n(n+1) tích 3 số tự nhiên liên tiếp chia hết cho 3(1)
(n-1)n tích 2 ssoo tự nhiên liên tiếp chia hết cho 2(2)
còn n^5 và có cùng chữ số tận cuunfg nên hiệu có chữ sô tận cùng là 0 chia hết cho 5(3)
từ (1)(2)(3) => chia hết cho 30
TK ử đây : https://hoc247.net/hoi-dap/toan-8/chung-minh-n-5-n-chia-het-cho-30-faq417269.html
ta có tổng trên số 45 ko chia hết cho 30
mà trong một tổng chỉ cần một số ko chia hết cho một số nào đó thì cả tổng ko chia hết cho số đó Vậy tổng trên chỉ chia hết cho 15 chứ ko chia hết cho 30
Vì 60 chia hết cho 15=>60.n chia hết cho 15. ->45 chia hết cho 15=> 60.n+45 chia hết cho 15. Vì 60 chia hết cho 30=>60.n chia hết cho 30. Nhưng 45 ko chia hết cho 30=>60.n+45 ko chia hết cho 30
Lời giải:
Ta có: $n^5-2011n=(n^5-n)-2010n$
$=n(n^4-1)-2010n=n(n^2-1)(n^2+1)-2010n$
$=n(n-1)(n+1)(n^2+1)-2010n$
Vì $n, n-1, n+1$ là 3 số nguyên liên tiếp nên chắc chắn tồn tại ít nhất 1 số chẵn, và tồn tại ít nhất 1 số chia hết cho $3$
$\Rightarrow n(n-1)(n+1)(n^2+1)=n(n^2-1)(n^2+1)$ chia hết cho $2$ và chia hết cho $3$ $(*)$
Mặt khác, ta biết 1 số chính phương khi chia cho $5$ có thể có dư là $0,1,4$
Nếu $n^2$ chia $5$ dư $0$ thì $n\vdots 5\Rightarrow n(n^2-1)(n^2+1)\vdots 5$
Nếu $n^2$ chia $5$ dư $1$ thì $n^2-1\vdots 5\Rightarrow n(n^2-1)(n^2+1)\vdots 5$
Nếu $n^2$ chia $5$ dư $4$ thì $n^2+1\vdots 5\Rightarrow n(n^2-1)(n^2+1)\vdots 5$ $(**)$
Từ $(**); (*)$ mà $(2,3,5)$ đôi một nguyên tố cùng nhau nên $n(n^2-1)(n^2+1)\vdots 30$
Mà $2010n\vdots 30$ do $2010\vdots 30$
Do đó $n^5-2011n=n(n^2-1)(n^2+1)-2010n\vdots 30$
Ta có đpcm.
Tóm lại $n(n^2-1)(n^2+1)\vdots 5$