K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2020

Với x,y bình đẳng .Giả sử x\(\ge y\)

\(\Rightarrow2\left(x+y\right)=3xy\le2\left(x+x\right)\)

\(\Rightarrow3xy\le4x\)

\(\Leftrightarrow3y\le4\)

Mà y là số tự nhiên nên \(\left[{}\begin{matrix}y=0\\y=1\end{matrix}\right.\)

Suy ra \(x=?\)

\(\frac{x^2}{y+1}+\frac{y+1}{4}\ge x;\frac{y^2}{z+1}+\frac{z+1}{4}\ge y;\frac{z^2}{x+1}+\frac{x+1}{4}\ge z\)

\(\Rightarrow VT\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{4}\ge\frac{3}{4}.2=\frac{3}{2}\)

13 tháng 1 2020

a

Nếu  \(y=0\Rightarrow x^2=3025\Rightarrow x=55\)

Nếu \(y>0\Rightarrow3^y⋮3\)

Mà \(3026\equiv2\left(mod3\right)\Rightarrow x^2\equiv2\left(mod3\right)\) 9 vô lý

Vậy.....

b

Không mất tính tổng quát giả sử \(x\ge y\)

Ta có:

\(\frac{1}{2}=\frac{1}{2x}+\frac{1}{2y}+\frac{1}{xy}\le\frac{1}{2y}+\frac{1}{2y}+\frac{1}{y^2}=\frac{1}{y}+\frac{1}{y^2}=\frac{y+1}{y^2}\)

\(\Rightarrow y^2\le2y+2\Rightarrow\left(y^2-2y+1\right)\le3\Rightarrow\left(y-1\right)^2\le3\Rightarrow y\le2\Rightarrow y=1;y=2\)

Với \(y=1\Rightarrow\frac{1}{2x}+\frac{1}{2}+\frac{1}{x}=\frac{1}{2}\Rightarrow\frac{1}{2x}+\frac{1}{x}=0\) ( loại )

Với \(y=2\Rightarrow\frac{1}{2x}+\frac{1}{4}+\frac{1}{2x}=\frac{1}{2}\Rightarrow\frac{1}{x}=\frac{1}{4}\Rightarrow x=4\)

Vậy x=4;y=2 và các hoán vị

13 tháng 1 2020

câu a làm cách khác đi bạn

21 tháng 10 2020

Tìm Min nhầm :((

21 tháng 10 2020

À Tìm Max đúng r :))

14 tháng 3 2016

Tu x+y/13=x-y/3

=> 3(x +y) = 13(x-y)

=> y = 5x/8 
Tu x-y/3=xy/200

=> 200(x-y) = 3xy

=> 200(x - 5x/8) = 3x.5x/8

=> x^2 - 40x

=> x(x-40) = 0

=> x = 0 hoac x = 40. 
Voi x = 0 ta co y = 0 
Voi x = 40 ta co y = 25

vì x,y # 0 nên x=40 và y=25

27 tháng 2 2017

cam on nhe

12 tháng 3 2021

Ta có:

\(M=\frac{2x+y}{xy}+\frac{3}{2x+y}=\frac{2x+y}{2}+\frac{3}{2x+y}\)

\(=\left(\frac{3}{8}.\frac{2x+y}{2}+\frac{3}{2x+y}\right)+\frac{5}{8}.\frac{2x+y}{2}\)

Có: \(\frac{3}{8}.\frac{2x+y}{2}+\frac{3}{2x+y}\ge2\sqrt{\frac{3}{8}.\frac{2x+y}{2}.\frac{3}{2x+y}}=\frac{3}{2}\)

Dấu '=' xảy ra <=> \(\frac{3}{8}.\frac{2x+y}{2}=\frac{3}{2x+y}\)

Có: \(\frac{5}{8}.\frac{2x+y}{2}\ge\frac{5}{8}\sqrt{2xy}=\frac{5}{4}\)

Dấu '=' xảy ra <=> 2x=y và xy=2

Do đó \(M\ge\frac{3}{2}+\frac{5}{4}=\frac{11}{4}\)

Dấu '=' xảy ra <=> x=1 và y=2

Vậy GTNN của  M là 11/4 khi x=1 và y=2