K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2019

Phương trình đã cho có nghiệm khi  ∆ ' = 1 - m ≥ 0 ⇔ m ≤ 1 .

Theo định lí Vi-ét, ta có: x 1 + x 2 = - 2 x 1 x 2 = m .

Kết hợp với điều kiện của bài toán 3 x 1 + 2 x 2 = 1  ta có hệ phương trình:

x 1 + x 2 = - 2 3 x 1 + 2 x 2 = 1 ⇔ x 1 = 5 x 2 = - 7

Do đó,x1.x2 = - 35= m (thỏa mãn m ≤ 1 ).

Chọn D.

23 tháng 2 2023

\(mx^2+2\left(m-1\right)x+\left(m-3\right)=0\left(1\right)\)

\(+TH_1:a=0\Leftrightarrow m=0\)

Thế \(m=0\) vào \(\left(1\right)\) \(\Rightarrow2.\left(-1\right)x-3=0\Rightarrow-2x-3=0\Rightarrow x=-\dfrac{3}{2}\left(ktm\right)\)

\(+TH_1:a\ne0\Leftrightarrow m\ne0\)

Theo Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-2m+2}{m}\\x_1x_2=\dfrac{c}{a}=\dfrac{m-3}{m}\end{matrix}\right.\)

\(x_1< 1< x_1\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\\left(x_1-1\right)\left(x_2-1\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[2\left(m-1\right)\right]^2-4m\left(m-3\right)>0\\x_1x_2-x_1-x_2+1< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4\left(m^2-2m+1\right)-4m^2+12m>0\\x_1x_2-\left(x_1+x_2\right)+1< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4m^2+8m+4-4m^2+12m>0\\\dfrac{m-3}{m}-\left(\dfrac{-2m+2}{m}\right)+1< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}20m+4>0\\\dfrac{m-3}{m}+\dfrac{2m-2}{m}+1< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>-\dfrac{1}{5}\\m-3+2m-2+m< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>-\dfrac{1}{5}\\4m-5< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>-\dfrac{1}{5}\\m< \dfrac{5}{4}\end{matrix}\right.\)

\(KL:m\in\left(-\dfrac{1}{5};\dfrac{5}{4}\right)\)

15 tháng 6 2015

\(\Delta=25-4m\)pt có 2 nghiệm <=> \(\Delta\ge0\Leftrightarrow25-4m\ge0\Leftrightarrow m\le\frac{25}{4}\)

áp dụng hệ thức vi ét ta có: \(x1+x2=5\) (1) ; \(x1.x2=m\)(2)

|x1-x2|=3 

th1: x1-x2=3 <=> x1=3+x2 =>thế vào (1):  x2+3+x2=5 <=> 2x2=2 <=> x2=1 =>x1=1+3=4 => x1.x2=m=1.4 => m=4(t/m đk)

th2: x1-x2=-3 <=> x1=-3+x2 => x2-3+x2=5 <=> x2=4 => x1=1 => m=1.4=4 (t/m đk)

=> pt có 2 nghiệm... <=> m=4

15 tháng 6 2015

1, thay m=-2 vào giải chắc bạn làm đc nếu k liên hệ mình giải cho

b, giải sử pt có 2 nghiệm pb, áp dụng hệ thức vi ét ta có: \(x1+x2=2m+2\)\(x1.x2=m-2\Leftrightarrow2.x1.x2=2m-4\)

=> \(x1+x2-2.x1.x2=2m+2-2m+4=6\)=> hệ thức liên hệ k phụ thuộc vào m

2) \(\Delta=4\left(m-3\right)^2+4>0\) với mọi m=> pt luôn có 2 nghiệm pb

áp dụng hệ thức vi ét ta có: \(x1+x2=2m-6\)\(x1.x2=-1\)

câu này bạn xem có sai đề k. loại bài toán áp dụng hệ thức vi ét này k bao giờ có đề là x1-x2 đâu nha

sửa đề rồi liên hệ để mình làm tiếp nha

 

5 tháng 4 2016

Xét (delta)=(2m+1)^2-2m

              =4m^2+4m+1-2m

              =4m^2+2m+1(luôn lớn hôn hoặc bằng 0)

Suy ra phương trình đã cho luôn có nghiệm

Theo hệ thức Vi-ét có x1+x2=2(2m+1)

                                 x1.x2=2m

Theo bài ra có x1^2+x2^2=(2căn3)^2

                     (x1^2+x2^2)^2-2x1.x2=12

                     4(2m+1)^2-4m=12

                     16m^2+12m+4=12

                     16m^2+12m-8=0

Suy ra m=\(\frac{-3+\sqrt{41}}{8}\)hoặc m=\(\frac{-3-\sqrt{41}}{8}\)

24 tháng 4 2021

a) Ta có: \(\Delta'=(\frac{6}{2})^2-m\)

                    \(=9-m\)

Để phương trình có 2 nghiệm phân biệt thì:

\(\Delta>0\)

\(\Rightarrow 9-m>0\)

\(\Leftrightarrow m<9\)

Vậy khi m < 9 thì phương trình có 2 nghiệm phân biệt

b)Theo định lí Vi-ét ta có:

\(x_1.x_2=\frac{-m}{1}=-m(1)\)

\(x_1+x_2=\frac{-6}{1}=-6\)

Lại có \(x_1=2x_2\)

\(\Rightarrow3x_2=-6\)

\(\Leftrightarrow x_2=-2\)

\(\Rightarrow x_1=-4\)

Thay x1;x2 vào (1) ta được 

\(8=m\)

Vậy m-8 thì x1=2x2

 

 

24 tháng 4 2021

Ở trên có đoạn mình đánh lộn  \(\Delta'\) ra \(\Delta\) nhé

17 tháng 4 2019

đầu tiên bn tính đenta

cho đenta lớn hơn hoặc = 0 thì pt có nghiệm

b, từ x1-2x2=5

=> x1=5+2x2

chứng minh đenta lớn hơn 0

theo hệ thức viet tính đc x1+x2=..

x1*x2=....

thay vào cái 1 rồi vào 2 là đc