Giải thích giùm mình :
\(f\left(x\right)=x+\sqrt{x^2+1}\)
Ta có : \(x+\sqrt{x^2+1}>x+\sqrt{x^2}\ge x+\left|x\right|\ge0\) thì sẽ suy ra được f(x) > 0 , giải thích giùm mình cái chỗ ta có
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em thử nha,sai thì thôi ạ.
2/ ĐK: \(-2\le x\le2\)
PT \(\Leftrightarrow\sqrt{2x+4}-\sqrt{8-4x}=\frac{6x-4}{\sqrt{x^2+4}}\)
Nhân liên hợp zô: với chú ý rằng \(\sqrt{2x+4}+\sqrt{8-4x}>0\) với mọi x thỏa mãn đk
PT \(\Leftrightarrow\frac{6x-4}{\sqrt{2x+4}+\sqrt{8-4x}}-\frac{6x-4}{\sqrt{x^2+4}}=0\)
\(\Leftrightarrow\left(6x-4\right)\left(\frac{1}{\sqrt{2x+4}+\sqrt{8-4x}}-\frac{1}{\sqrt{x^2+4}}\right)=0\)
Tới đây thì em chịu chỗ xử lí cái ngoặc to rồi..
1.\(\left(\sqrt{x+3}-\sqrt{x+1}\right)\left(x^2+\sqrt{x^2+4x+3}\right)=2x\)
ĐK \(x\ge-1\)
Nhân liên hợp ta có
\(\left(x+3-x-1\right)\left(x^2+\sqrt{x^2+4x+3}\right)=2x\left(\sqrt{x+3}+\sqrt{x+1}\right)\)
<=>\(x^2+\sqrt{\left(x+1\right)\left(x+3\right)}=x\left(\sqrt{x+3}+\sqrt{x+1}\right)\)
<=> \(\left(x^2-x\sqrt{x+3}\right)+\left(\sqrt{\left(x+1\right)\left(x+3\right)}-x\sqrt{x+1}\right)=0\)
<=> \(\left(x-\sqrt{x+3}\right)\left(x-\sqrt{x+1}\right)=0\)
<=> \(\orbr{\begin{cases}x=\sqrt{x+3}\\x=\sqrt{x+1}\end{cases}}\)
=> \(x\in\left\{\frac{1+\sqrt{13}}{2};\frac{1+\sqrt{5}}{2}\right\}\)
Vậy \(x\in\left\{\frac{1+\sqrt{13}}{2};\frac{1+\sqrt{5}}{2}\right\}\)
Người đi hỏi có thể gợi ý câu mình hỏi cơ à, ngầu vậy :)
ĐKXĐ: \(\left[{}\begin{matrix}x\ge1\\x\le-1\end{matrix}\right.\)
Đặt \(\sqrt[3]{x+1}=a;\sqrt[3]{x-1}=b\)
Ta có hệ: \(\left\{{}\begin{matrix}a-b=\sqrt{ab}\\a^3-b^3=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a^2-3ab+b^2=0\\a^3-b^3=2\end{matrix}\right.\)
Quy về hệ đối xứng loại 1 rồi đó, S P mà giải
\(x^2+1>x^2\Rightarrow\sqrt{x^2+1}>\sqrt{x^2}\)
Và \(\sqrt{x^2}=\left|x\right|\)
\(x+\left|x\right|=\left\{{}\begin{matrix}0;\left(x\le0\right)\\2x;\left(x>0\right)\end{matrix}\right.\)
Cả 2 trường hợp đều cho kết quả ko âm, do đó ta luôn có \(x+\left|x\right|\ge0\)