Cho n là số tự nhiên.Chứng minh 2n + 3 và n+1 là 2 số nguyên tố cùng nhau
Giải giúp mình đi mình tích cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi\(ƯCLN\left(2n+3,n+1\right)=a\)
\(\Rightarrow\hept{\begin{cases}2n+3⋮a\\n+1⋮a\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2n+3⋮a\\2n+2⋮a\end{cases}}\Rightarrow2n+3-\left(2n+2\right)⋮a\)\(\Rightarrow1⋮a\Rightarrow a=1\RightarrowƯCLN\left(2n+3,n+1\right)=1\left(đpcm\right)\)
Gọi d là U7CLN(2n+3;n+1)
Ta có : 2n+3 chia hết cho d và n+1 chia hết cho d
Từ đó , ta suy ra : {(2n+3)-[2(n+1)]} chia hết cho d
=>(2n+3)-(2n+2) chia hết cho d
=>(2n-2n)+(3-2) chia hết cho d
=> 0 + 1 chia hết cho d
=> 1 chia hết cho d
Suy ra : d = 1 [ tức là ƯCLN(2n+3;n+1)=1]
Vậy : 2n+3 và n+1 là hai số nguyên tố cùng nhau
Gọi d = UCLN(2n+3; n+1)
Ta có: 2n+3 và n+1 chia hết cho d
[2n+3-2(n+1)] chia hết cho d
2n+3-2n+2 chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy hai số 2n+3 và n+1 là hai số nguyên tố cùng nhau
gọi d là ƯCLN(2n+3;n+1)
Ta có:n+1 chia hết cho d =>2n+2chia hết cho d(1)
2n+3 chia hết cho d(2)
Từ (1)(2)=>(2n+3)-(2n+2)chia hết cho d
hay 1 chia hết cho d
Vậy d=1=>2n+3 và n+1 là hai số nguyên tố cùng nhau(đpcm)
a, gọi ƯCLN(n,2n-1) là d (d thuộc N)
Ta có: n chia hết cho d
=> 2n chia hết cho d
2n-1 chia hết cho d
=> 2n-1-2n chia hết cho d
=> 1 chia hết cho d
=> d thuộc ước của 1
=> d=1
=> n bà 2n+1 nguyên tố cùng nhau