K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2020

\(\sqrt{x-2+2\sqrt{x+1}}+\sqrt{x+10+6\sqrt{x+1}}=2\sqrt{x+2+2\sqrt{x+1}}\)

\(\Leftrightarrow\sqrt{x+1}+1+\left|\sqrt{x+1}-3\right|=2\cdot\left|\sqrt{x+1}-1\right|\)

Đặt \(y=\sqrt{x+1}\left(y\ge0\right)\)PT đã cho trở thành

\(y+1+\left|y-3\right|=2\left|y-1\right|\)

Nếu \(0\le y\le1:y+1+3-y=2-2y\Leftrightarrow y=-1\)(loại)

Nếu \(1\le y\le3:y+1+3-y=2y-2\Leftrightarrow y=3\)

Nếu y>3: y+1-y-3=2y-2 (vô nghiệm)

Với y=3 <=> x+1=9 <=> x=8

Vậy pt có 1 nghiệm x=8

NV
13 tháng 8 2021

ĐKXĐ: \(x\ge-1\)

\(\sqrt{x+1+2\sqrt{x+1}+1}+\sqrt{x+1-6\sqrt{x+1}+9}=2\sqrt{x+1-2\sqrt{x+1}+1}\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x+1}+1\right)^2}+\sqrt{\left(\sqrt{x+1}-3\right)^2}=2\sqrt{\left(\sqrt{x+1}-1\right)^2}\)

\(\Leftrightarrow\left|\sqrt{x+1}+1\right|+\left|\sqrt{x+1}-3\right|=2\left|\sqrt{x+1}-1\right|\)

Ta có:

\(\left|\sqrt{x+1}+1\right|+\left|\sqrt{x+1}-3\right|\ge\left|\sqrt{x+1}+1+\sqrt{x+1}-3\right|=2\left|\sqrt{x+1}-1\right|\)

Dấu "=" xảy ra khi và chỉ khi:

\(\sqrt{x+1}-3\ge0\Rightarrow x\ge8\)

Vậy nghiệm của pt là \(x\ge8\)

7 tháng 8 2021

a, ĐK: \(x\le-1,x\ge3\)

\(pt\Leftrightarrow2\left(x^2-2x-3\right)+\sqrt{x^2-2x-3}-3=0\)

\(\Leftrightarrow\left(2\sqrt{x^2-2x-3}+3\right).\left(\sqrt{x^2-2x-3}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-2x-3}=-\dfrac{3}{2}\left(l\right)\\\sqrt{x^2-2x-3}=1\end{matrix}\right.\)

\(\Leftrightarrow x^2-2x-3=1\)

\(\Leftrightarrow x^2-2x-4=0\)

\(\Leftrightarrow x=1\pm\sqrt{5}\left(tm\right)\)

7 tháng 8 2021

b, ĐK: \(-2\le x\le2\)

Đặt \(\sqrt{2+x}-2\sqrt{2-x}=t\Rightarrow t^2=10-3x-4\sqrt{4-x^2}\)

Khi đó phương trình tương đương:

\(3t-t^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=0\\t=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2+x}-2\sqrt{2-x}=0\\\sqrt{2+x}-2\sqrt{2-x}=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2+x=8-4x\\2+x=17-4x+12\sqrt{2-x}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\left(tm\right)\\5x-15=12\sqrt{2-x}\left(1\right)\end{matrix}\right.\)

Vì \(-2\le x\le2\Rightarrow5x-15< 0\Rightarrow\left(1\right)\) vô nghiệm

Vậy phương trình đã cho có nghiệm \(x=\dfrac{6}{5}\)

26 tháng 6 2017

A không phải là nghiệm

Vì theo mk tính thì A= \(\sqrt{3}\)\(\sqrt{2}\)

mà  nghiệm của phương trình mk tìm đc là \(\sqrt{3}\)-   2

=>   A không phải là nghiệm của phương trình trên.

26 tháng 6 2017

retrt

17 tháng 6 2021

b. Tự đặt đk

\(x^{^2}+5\sqrt{x-3}=21\\\Leftrightarrow x^{^2}-9+5\sqrt{x-3}=12 \)

Đặt \(a=\sqrt{x-3}\) \(\left(a\ge0\right)\) Phương trình trở thành:

\(a^{^2}\left(a^{^2}+6\right)+5a=12\\ \Leftrightarrow a^{^4}+6a^{^2}+5a-12=0\\ \Leftrightarrow a^{^4}-a^{^3}+a^{^3}-a^{^2}+7a^{^2}-7a+12a-12=0\\ \Leftrightarrow\left(a-1\right)\left(a^{^3}+a^{^2}+7a+12\right)=0\\ \Leftrightarrow a=1\left(tmdk\right)\)

Ta có: vì \(a\ge0\) nên \(a^{^3}+a^{^2}+7a+12\ne0\)

Với a = 1 ta có x=4 (tmdk)

19 tháng 6 2021

cảm ơn bạn

1 tháng 3 2016

tìm đk r bình lên

15 tháng 7 2021

`\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=2\sqrt{x-1}(x>=1)`

`<=>\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}=2\sqrt{x-1}`

`<=>\sqrt{(\sqrt{x-1}+1)^2}+\sqrt{(\sqrt{x-1}-1)^2}=2\sqrt{x-1}`

`<=>|\sqrt{x-1}+1|+|\sqrt{x-1}-1|=2\sqrt{x-1}`

`<=>\sqrt{x-1}+1+|\sqrt{x-1}-1|=2\sqrt{x-1}`

`<=>|\sqrt{x-1}-1|=\sqrt{x-1}-1`

`<=>\sqrt{x-1}-1>=0``

`<=>sqrt{x-1}>=1`

`<=>x-1>=1`

`<=>x>=2`

Vậy `S={x|x>=2}`

1 tháng 10 2021

\(a,ĐK:x\ge\dfrac{1}{5}\\ PT\Leftrightarrow5x-1=64\\ \Leftrightarrow x=13\left(tm\right)\\ b,ĐK:x\ge\dfrac{2}{5}\\ BPT\Leftrightarrow5x-2< 16\\ \Leftrightarrow x< \dfrac{18}{5}\\ \Leftrightarrow\dfrac{2}{5}\le x< \dfrac{18}{5}\\ c,ĐK:x\ge3\\ PT\Leftrightarrow\left|x-1\right|-\left|x-2\right|=x-3\\ \Leftrightarrow\left[{}\begin{matrix}1-x-\left(2-x\right)=x-3\left(x< 1\right)\\x-1-\left(2-x\right)=x-3\left(1\le x< 2\right)\\x-1-\left(x-2\right)=x-3\left(x\ge2\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2\left(ktm\right)\\x=0\left(tm\right)\\x=4\left(tm\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

21 tháng 2 2021

Giải:

Tập xác định của phương trình

Tập xác định của phương trình

Biến đổi vế trái của phương trình

Biến đổi vế phải của phương trình

Phương trình thu được sau khi biến đổi

Biến đổi vế trái của phương trình

Phương trình thu được sau khi biến đổi

Đơn giản biểu thức

Giải phương trình

thu được x=2
NV
21 tháng 2 2021

\(\Leftrightarrow\sqrt{\left(\sqrt{x+7}-1\right)^2}+\sqrt{x+1-\sqrt{x+7}}=2\)

ĐKXĐ: \(\left\{{}\begin{matrix}x+7\ge0\\x+1-\sqrt{x+7}\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-7\\x\ge-1\\\left(x+1\right)^2\ge x+7\end{matrix}\right.\) \(\Leftrightarrow x\ge2\)

Khi đó pt tương đương:

\(\left|\sqrt{x+7}-1\right|+\sqrt{x+1-\sqrt{x+7}}=2\)

\(\Leftrightarrow\sqrt{x+7}+\sqrt{x+1-\sqrt{x+7}}=3\)

Do \(x\ge2\Rightarrow\left\{{}\begin{matrix}\sqrt{x+7}\ge\sqrt{2+7}=3\\\sqrt{x+1-\sqrt{x+7}}\ge0\end{matrix}\right.\)

\(\Rightarrow\sqrt{x+7}+\sqrt{x+1-\sqrt{x+7}}\ge3\)

Dấu "=" xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}\sqrt{x+7}=3\\\sqrt{x+1-\sqrt{x+7}}=0\end{matrix}\right.\) \(\Leftrightarrow x=2\)

Pt có đúng 1 nghiệm