K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Dấu ''\(x\)'' là dấu nhân chăng ? 

 \(A=\frac{2019x2020}{2019x2020+1}\)và \(B=\frac{2020}{2021}\)

Bài ra ta có : 

Xét \(A=\frac{2019x2020}{2019x\left(2020+1\right)}=\frac{2020}{2020+1}=\frac{2020}{2021}\)

Vì \(\frac{2020}{2021}=\frac{2020}{2021}\)

Suy ra A = B theo (ĐPCM)

6 tháng 11 2021

a=(2021-2019) x 2020/2019x2020+(2020 +1)x7+2013

=1x2020/2019x2020+2020x7+1x7+2013

=2020/(2019+7)x2020+2020

=2020/(2019+1+70) x2020

=2020/2027 x2020

=2020/4112783

6 tháng 11 2021

Mình cảm ơn ạ nếu bạn có thời gian làm giúp mình câu b c d đc k ạ?:3

17 tháng 1 2023

Ta có : 

\(A=\dfrac{2019\times2020}{2019\times2020+1}=\dfrac{2019\times2020+1-1}{2019\times2020+1}=1-\dfrac{1}{2019\times2020+1}\)

Suy ra  A < 1 (1) 

Lại có \(B=\dfrac{2020}{2019}=\dfrac{2019+1}{2019}=\dfrac{2019}{2019}+\dfrac{1}{2019}=1+\dfrac{1}{2019}\)

Suy ra B > 1 (2) 

Từ (1) và (2) ta có : A < 1 < B

=> A < B

Vậy A < B  

 

? x ? = ?

=?
= ?  : ?
=...................

hok tốt :)))

(LAUGH) :)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

a: 43/52>26/52=1/2=60/120

b: 17/68=1/4<1/3=35/105<35/103

c: \(\dfrac{2018\cdot2019-1}{2018\cdot2019}=1-\dfrac{1}{2018\cdot2019}\)

\(\dfrac{2019\cdot2020-1}{2019\cdot2020}=1-\dfrac{1}{2019\cdot2020}\)

2018*2019<2019*2020

=>-1/2018*2019<-1/2019*2020

=>\(\dfrac{2018\cdot2019-1}{2018\cdot2019}< \dfrac{2019\cdot2020-1}{2019\cdot2020}\)

30 tháng 7 2020

Ta có : A = \(\frac{10^{2020}+1}{10^{2021}+1}\)

=> 10A = \(\frac{10^{2021}+10}{10^{2021}+1}=1+\frac{9}{10^{2021}+1}\)

Lại có : \(B=\frac{10^{2021}+1}{10^{2022}+1}\)

=> \(10B=\frac{10^{2022}+10}{10^{2022}+1}=1+\frac{9}{10^{2022}+1}\)

Vì \(\frac{9}{10^{2022}+1}< \frac{9}{10^{2021}+1}\)

=> \(1+\frac{9}{10^{2022}+1}< 1+\frac{9}{10^{2022}+1}\)

=> 10B < 10A

=> B < A

b) Ta có : \(\frac{2019}{2020+2021}< \frac{2019}{2020}\)

Lại có : \(\frac{2020}{2020+2021}< \frac{2020}{2021}\)

=> \(\frac{2019}{2020+2021}+\frac{2020}{2020+2021}< \frac{2019}{2020}+\frac{2020}{2021}\)

=> \(\frac{2019+2020}{2020+2021}< \frac{2019}{2020}+\frac{2020}{2021}\)

=> B < A

13 tháng 2 2022

sai rồi

8 tháng 4 2020

1/5x6+1/6x7+1/7x8+...+1/2019x2020

= 6/5+7/6+8/7+...+2020/2019

Rút gọn cho nhau ta còn 2020/5=404

8 tháng 4 2020

1/5 x 6 + 1/6 x7 + 1/7 x8 + ... + 1/2019 - 1/ 2020

=1/5 -1/6 +1/6 -1/7 + 1/7 - 1/8 + ... + 1/2019 - 1/2020

Sau khi giản ước, ta còn:

1/5 - 1/2020 = 403/2020.

                     Đáp số: 403/2020

19 tháng 8 2020

a)

\(P=a\sqrt{1+\frac{1}{a^2}+\frac{1}{\left(a+1\right)^2}}+\frac{a}{b}=a\sqrt{\frac{a^2\left(a+1\right)^2+\left(a+1\right)^2+a^2}{a^2\left(a+1\right)^2}}+\frac{a}{a+1}\)

      =\(a\sqrt{\frac{a^2\left(a+1\right)^2+2a\left(a+1\right)+1}{a^2\left(a+1\right)^2}}+\frac{a}{a+1}=a\sqrt{\frac{\left[a\left(a+1\right)+1\right]^2}{\left[a\left(a+1\right)\right]^2}}+\frac{a}{a+1}\)

      \(=a.\frac{a\left(a+1\right)+1}{a\left(a+1\right)}+\frac{a}{a+1}=a+\frac{1}{a+1}+\frac{a}{a+1}=a+1\)

Vay P=a+1

phan b,c ap dung phan a la ra

8 tháng 10 2020

CM bài toán phụ: \(x+y+z=0\) 

CM: \(I=\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\) với x,y,z dương

Ta có: \(I=\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}}=\sqrt{\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2-2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)}\)

\(=\sqrt{\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2-2\cdot\frac{x+y+z}{xyz}}=\sqrt{\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\)

\(=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

Áp dụng vào ta được: \(Q=1+1-\frac{1}{2}+1+\frac{1}{2}-\frac{1}{3}+...+1+\frac{1}{2020}-\frac{1}{2021}\)

\(Q=2021-\frac{1}{2021}=...\)

24 tháng 5 2020

Ta có: \(\frac{2019}{2020}>\frac{2019}{2020+2021};\frac{2020}{2021}>\frac{2020}{2020+2021}\)

=> \(\frac{2019}{2020}+\frac{2020}{2021}>\frac{2019}{2020+2021}+\frac{2020}{2020+2021}=\frac{2019+2020}{2020+2021}\)

=> A > B.

Dặt \(A=\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{2019.2020}\)

\(A=\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{2019}-\frac{1}{2020}\)

\(A=\frac{1}{6}-\frac{1}{2020}\)

\(A=\frac{1007}{6060}\)

hok tốt!!